Zhaohui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5339872/publications.pdf

Version: 2024-02-01

122 2,639 25 47
papers citations h-index g-index

124 124 2277
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	2×2 MIMO Equalizer Enabled Transmitter Side IQ Imbalance Compensation for Optical Single Sideband Direct Detection System. Journal of Lightwave Technology, 2022, 40, 1914-1920.	2.7	4
2	Dynamic Evaluation of Four CV Modes Multiplexing System Using Kramers–Kronig Reception and 4 × 4 Non-Singular MIMO. Journal of Lightwave Technology, 2022, 40, 1962-1971.	2.7	4
3	Multi-Rate Nyquist-SCM for C-Band 100 Gbit/s Signal Over 50 km Dispersion-Uncompensated Link. Journal of Lightwave Technology, 2022, 40, 1930-1936.	2.7	8
4	Engineered Raman Lasing in Photonic Integrated Chalcogenide Microresonators. Laser and Photonics Reviews, 2022, 16 , .	4.4	25
5	Dynamic Range Enlargement of Distributed Acoustic Sensing Based on Temporal Differential and Weighted-Gauge Approach. Journal of Lightwave Technology, 2022, 40, 3038-3045.	2.7	7
6	Modified Gerchberg-Saxton Algorithm Based Electrical Dispersion Pre-Compensation for Intensity-modulation and Direct-detection Systems. Journal of Lightwave Technology, 2022, 40, 2840-2849.	2.7	10
7	High-Efficiency Orbital Angular Momentum Beams Multiplexing System With Compact Shaper and Transformation Optics. Journal of Lightwave Technology, 2022, 40, 4548-4554.	2.7	0
8	Lateral Force Sensing Based on Sagnac Interferometry Realized by a High-Birefringence Suspended-Core Fiber. Journal of Lightwave Technology, 2022, 40, 3935-3941.	2.7	6
9	On-Chip Waveguide Amplifiers for Multi-Band Optical Communications: A Review and Challenge. Journal of Lightwave Technology, 2022, 40, 3364-3373.	2.7	7
10	Spectral Demodulation of Fiber Bragg Grating Sensor Based on Deep Convolutional Neural Networks. Journal of Lightwave Technology, 2022, 40, 4429-4435.	2.7	16
11	On Cooperative Fault Management in Multi-Domain Optical Networks Using Hybrid Learning. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	1.9	6
12	High-performance polarization management devices based on thin-film lithium niobate. Light: Science and Applications, 2022, 11, 93.	7.7	48
13	Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Science and Applications, 2022, 11, .	7.7	24
14	Multi-channel higher-order OAM generation and switching based on a mode selective interferometer. Optics Express, 2022, 30, 25093.	1.7	7
15	Beyond 1.6 Tb/s Net Rate PAM Signal Transmission for Rack-Rack Optical Interconnects With Mode and Wavelength Division Multiplexing. Journal of Lightwave Technology, 2021, 39, 340-346.	2.7	9
16	Special Issue on Enabling Technology in Optical Fiber Communications: From Device, System to Networking. Sensors, 2021, 21, 1969.	2.1	1
17	On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photonics Research, 2021, 9, 1272.	3.4	21
18	Optical Single Sideband Signal Reconstruction Based on Time-Domain Iteration. Journal of Lightwave Technology, 2021, 39, 2319-2326.	2.7	10

#	Article	IF	CITATIONS
19	Theoretical Investigation of Broadband Frequency Conversion Bridging the Mid-Infrared and Telecom Band Through a Chalcogenide/Sio ₂ Hybrid Waveguide. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	O
20	Transmission and Generation of Orbital ANGULAR Momentum Modes in Optical Fibers. Photonics, 2021, 8, 246.	0.9	8
21	Optical Performance Monitoring of Multiple Parameters in Future Optical Networks. Journal of Lightwave Technology, 2021, 39, 3792-3800.	2.7	20
22	On-Chip Detector Based on Supercontinuum Generation in Chalcogenide Waveguide. Journal of Lightwave Technology, 2021, 39, 3890-3895.	2.7	13
23	Burst-Error-Propagation Suppression for Decision-Feedback Equalizer in Field-Trial Submarine Fiber-Optic Communications. Journal of Lightwave Technology, 2021, 39, 4601-4606.	2.7	21
24	Imbalanced Digital Back-Propagation for Nonlinear Optical Fiber Transmissions. Journal of Lightwave Technology, 2021, 39, 4622-4628.	2.7	8
25	Imaging biological tissue with high-throughput single-pixel compressive holography. Nature Communications, 2021, 12, 4712.	5.8	34
26	Stimulated Brillouin Scattering in Low-Loss Ge ₂₅ Sb ₁₀ S ₆₅ Chalcogenide Waveguides. Journal of Lightwave Technology, 2021, 39, 5048-5053.	2.7	14
27	Fiber Vector Eigenmode Multiplexing Based High Capacity Transmission Over 5-km FMF With Kramers-Kronig Receiver. Journal of Lightwave Technology, 2021, 39, 4932-4938.	2.7	9
28	100 Gbit/s \hat{l} » DMT-PON System Based on Intensity Modulation and Heterodyne Coherent Detection. IEEE Photonics Technology Letters, 2021, 33, 1014-1017.	1.3	8
29	Processing for dispersive intensity-modulation and direct-detection fiber-optic communications. Optics Letters, 2021, 46, 138.	1.7	16
30	Noise Shaping Enhanced DMT Signal Transmission Utilizing Low-Resolution DAC. IEEE Photonics Journal, 2021, 13, 1-7.	1.0	8
31	Transmission of a 56  Gbit/s PAM4 signal with low-resolution DAC and pre-equalization only over 80  fiber in C-band IM/DD systems for optical interconnects. Optics Letters, 2021, 46, 5615.	km 1.7	14
32	Transmitter IQ Imbalance Compensation in Single Sideband Direct Detection System with $2x2\text{MIMO}$ Equalizer. , 2021 , , .		1
33	Performance Enhanced Gerchberg-Saxton Algorithm Based Electrical Dispersion Pre-compensation for Intensity-Modulation and Direct-Detection System. , 2021, , .		3
34	DFT Spread Spectrally Efficient Frequency Division Multiplexing for IM-DD Transmission in C-Band. Journal of Lightwave Technology, 2020, 38, 3526-3532.	2.7	7
35	Amplifier-less transmission of beyond 100-Gbit/s/λ signal for 40-km DCI-Edge with 10G-class O-band DML. Journal of Lightwave Technology, 2020, 38, 5649-5655.	2.7	15
36	High-performance coherent optical modulators based on thin-film lithium niobate platform. Nature Communications, 2020, 11, 3911.	5.8	245

#	Article	IF	Citations
37	Toward Universal Optical Performance Monitoring for Intelligent Optical Fiber Communication Networks. IEEE Communications Magazine, 2020, 58, 54-59.	4.9	11
38	Adaptive Channel-Matched Detection for C-Band 64-Gbit/s Optical OOK System Over 100-km Dispersion-Uncompensated Link. Journal of Lightwave Technology, 2020, 38, 5048-5055.	2.7	42
39	Effects of Shallow Suspension in Low-loss Waveguide-integrated Chalcogenide Microdisk Resonators. Journal of Lightwave Technology, 2020, , 1-1.	2.7	7
40	An accurate method for measuring the proportions of degenerated spatial modes in fibers. Journal of Lightwave Technology, 2020, , 1-1.	2.7	6
41	Enabling Technology in High-Baud-Rate Coherent Optical Communication Systems. IEEE Access, 2020, 8, 111318-111329.	2.6	20
42	Aberration-free aspherical in-plane tunable liquid lenses by regulating local curvatures. Lab on A Chip, 2020, 20, 995-1001.	3.1	23
43	100G PAM-6 and PAM-8 Signal Transmission Enabled by Pre-Chirping for 10-km Intra-DCI Utilizing MZM in C-band. Journal of Lightwave Technology, 2020, 38, 3445-3453.	2.7	30
44	Singleâ€Layer Aberrationâ€Compensated Flat Lens for Robust Wideâ€Angle Imaging. Laser and Photonics Reviews, 2020, 14, 2000017.	4.4	33
45	Ultrasound Measurement Using On-Chip Optical Micro-Resonators and Digital Optical Frequency Comb. Journal of Lightwave Technology, 2020, 38, 5293-5301.	2.7	13
46	Dual-Drive Mach-Zehnder Modulator-Based Single Side-Band Modulation Direct Detection System Without Signal-to-Signal Beating Interference. Journal of Lightwave Technology, 2020, 38, 4341-4351.	2.7	19
47	C-band 56  Gbit/s on/off keying system over a 100  km dispersion-uncompensated link using on receiver-side digital signal processing. Optics Letters, 2020, 45, 758.	l _{4.7}	15
48	Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photonics Research, 2020, 8, 303.	3.4	30
49	$1.12\mathrm{Tbit/s}$ fiber vector eigenmode multiplexing transmission over 5-km FMF with Kramers-Kronig receiver. , 2020, , .		2
50	OSNR Monitoring Based on Low-Bandwidth Coherent Receiver and Discrete Classifier. , 2020, , .		1
51	A thorough study on genetic algorithms in feedback-based wavefront shaping. Journal of Innovative Optical Health Sciences, 2019, 12 , .	0.5	26
52	Demonstration of Low-Cost EML Based 240 Gbit/s DFT-Spread DMT Signal Transmission Over Few-Mode Fiber With Cylindrical Vector Beam Multiplexing. IEEE Access, 2019, 7, 77786-77791.	2.6	7
53	Optimization Algorithms of Neural Networks for Traditional Time-Domain Equalizer in Optical Communications. Applied Sciences (Switzerland), 2019, 9, 3907.	1.3	10
54	Real-Time Observation of the Regime Transition Dynamics of Mode-Locked Fiber Lasers. IEEE Photonics Technology Letters, 2019, 31, 1545-1548.	1,3	7

#	Article	IF	CITATIONS
55	Joint FDE and MLSD Algorithm for 56-Gbit/s Optical FTN-PAM4 System Using 10G-Class Optics. Journal of Lightwave Technology, 2019, 37, 3343-3350.	2.7	22
56	In-Fiber Mach-Zehnder Interferometer Exploiting a Micro-Cavity For Strain and Temperature Simultaneous Measurement. IEEE Sensors Journal, 2019, 19, 5632-5638.	2.4	25
57	Comparison of Bit-Loading DMT and Pre-Equalized DFT-Spread DMT for 2-km Optical Interconnect System. Journal of Lightwave Technology, 2019, 37, 2194-2200.	2.7	50
58	Vector mode based optical direct detection orthogonal frequency division multiplexing transmission in short-reach optical link. Frontiers of Optoelectronics, 2019, 12, 41-51.	1.9	1
59	Multi-Dimensional Optical Fiber Sensing Enabled by Digital Coherent Optical Technologies. Journal of Lightwave Technology, 2019, 37, 2488-2501.	2.7	3
60	Optical, mechanical and thermal characterizations of suspended chalcogenide glass microdisk membrane. Optics Express, 2019, 27, 15918.	1.7	9
61	Non-orthogonal Discrete Multi-tone With Low Decoding Complexity Utilizing Symmetric Compression in Time–Frequency Space. IEEE Photonics Journal, 2018, 10, 1-7.	1.0	3
62	Investigation of Four-Wave-Mixing Crosstalk in Phase-Sensitive Fiber Optical Parametric Amplifier. Journal of Lightwave Technology, 2018, 36, 5113-5120.	2.7	13
63	100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference. Optics Express, 2018, 26, 24066.	1.7	37
64	Ultra-broadband on-chip twisted light emitter for optical communications. Light: Science and Applications, 2018, 7, 18001-18001.	7.7	136
65	DD-OFDM transmission over few-mode fiber based on direct vector mode multiplexing. Optics Express, 2018, 26, 18749.	1.7	17
66	Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication. ACS Photonics, 2018, 5, 3478-3484.	3.2	58
67	High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip. Sensors, 2018, 18, 202.	2.1	53
68	Optofluidic Tunable Lenses for In-Plane Light Manipulation. Micromachines, 2018, 9, 97.	1.4	22
69	Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity. Sensors, 2018, 18, 1239.	2.1	26
70	Mode Division Multiplexing Based on Ring Core Optical Fibers. IEEE Journal of Quantum Electronics, 2018, 54, 1-18.	1.0	32
71	Spatial resolution improvement of single-shot digital optical frequency comb-based Brillouin optical time domain analysis utilizing multiple pump pulses. Optics Letters, 2018, 43, 3534.	1.7	18
72	Ultrafast polarization bio-imaging based on coherent detection and time-stretch techniques. Biomedical Optics Express, 2018, 9, 6556.	1.5	8

#	Article	IF	CITATIONS
73	Fast-Switchable OAM-Based High Capacity Density Optical Router. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	7
74	Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams. Scientific Reports, 2017, 7, 42276.	1.6	55
75	Superposing Multiple LP Modes With Microphase Difference Distributed Along Fiber to Generate OAM Mode. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	15
76	95.16-Gb/s Mode-Division-Multiplexing Signal Transmission in Free-Space Enabled by Effective-Conversion of Vector Beams. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	8
77	Characterizing the differential mode group delay and modal dispersion of long few-mode fiber based on electrical spectral interferometry. Optical Engineering, 2017, 56, 036110.	0.5	0
78	Optical Frequency Comb Generation Based on Dual-Polarization IQ Modulator Shared by Two Polarization-Orthogonal Recirculating Frequency Shifting Loops. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	8
79	Approach to multiplexing fiber communication with cylindrical vector beams. Optics Letters, 2017, 42, 2579.	1.7	65
80	$228\ \text{Gb/s}$ vector-mode-division-multiplexing signal transmission in free-space based on optical frequency comb. , $2017,$, .		1
81	Joint CD and PMD monitoring based on a pair of low-bandwidth coherent receivers. Optics Express, 2016, 24, 26756.	1.7	3
82	Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: <i>In Situ</i> Detection of Electroactive Biofilms. Analytical Chemistry, 2016, 88, 7609-7616.	3.2	64
83	Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks and genetic algorithms. Photonic Network Communications, 2016, 32, 246-252.	1.4	12
84	In-band OSNR monitoring based on low-bandwidth coherent receiver and tunable laser. Frontiers of Optoelectronics, 2016, 9, 526-530.	1.9	1
85	Experimental Demonstration of 16-QAM DD-SEFDM With Cascaded BPSK Iterative Detection. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	25
86	Mode Multiplexing and High Efficient Switching in Few-Mode Fiber Based on Modeled Blazed Grating. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	6
87	Sensitive Orbital Angular Momentum (OAM) Monitoring by Using Gradually Changing-Period Phase Grating in OAM-Multiplexing Optical Communication Systems. IEEE Photonics Journal, 2016, 8, 1-6.	1.0	13
88	Data-aided linear fitting blind phase estimation method for coherent optical OFDM system. Photonic Network Communications, 2016, 31, 316-320.	1.4	2
89	Optofluidic tunable lenses using laser-induced thermal gradient. Lab on A Chip, 2016, 16, 104-111.	3.1	38
90	Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Science and Applications, 2015, 4, e257-e257.	7.7	426

#	Article	IF	Citations
91	Mixed-polar-amplitude-modulation pilot-based blind phase estimation for coherent optical OFDM system. , 2015, , .		O
92	A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time. Light: Science and Applications, 2015, 4, e300-e300.	7.7	51
93	Advanced modulation formats for 400-Gbps short-reach optical inter-connection. Optics Express, 2015, 23, 492.	1.7	99
94	4 × 2 Tbit/s superchannel selfâ€coherent transmission based on carrier tracking and expanding. Electronics Letters, 2014, 50, 195-197.	0.5	2
95	Experimental Demonstration of 429.96-Gb/s OFDM/OQAM–64QAM Over 400-km SSMF Transmission Within a 50-GHz Grid. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	14
96	Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode. Optics Express, 2014, 22, 12079.	1.7	41
97	Optical spectrally efficient FDM system for electrical and optical bandwidth saving. , 2014, , .		4
98	Experimental demonstration of 100 -Gb/s direct detection OFDM/OQAM signal over 80 -km SSMF within 50 -GHz optical grid using a single photodiode., 2014 ,,.		0
99	Mode multiplexing and de-multiplexing using few-mode tilted fiber Bragg grating for SDM-WDM transmission system. , 2014, , .		1
100	OSNR Monitoring Based on Low-cost Coherent Scanning Receiver and Reference Spectrum Technique. , 2014, , .		1
101	432-Gb/s Direct-Detection Optical OFDM Superchannel Transmission Over 3040-km SSMF. IEEE Photonics Technology Letters, 2013, 25, 1524-1526.	1.3	26
102	Multiwavelength narrow linewidth erbium-doped fiber laser based on cascading two FP-LDs. , 2013, , .		0
103	Phase noise estimation based on direct detection using phase noise to intensity noise conversion., 2013,,.		2
104	Optical power monitoring for O-OFDM superchannel based on Wiener deconvolution. , 2013, , .		0
105	Large-Range Switchable Microwave & Millimeter-Wave Signal Generator Based on a Triple-Wavelength Fiber Laser. IEICE Transactions on Electronics, 2013, E96.C, 197-200.	0.3	0
106	Compensation for nonlinear distortion of optical OFDM signals induced by electro-absorption modulated lasers with digital predistortion. , 2012 , , .		1
107	Widely tunable microwave photonic filter based on phase modulation and Brillouin selective sideband amplification. , 2012 , , .		0
108	Microwave photonic bandpass filter based on phase modulation and Hi-Bi FBC-FP cavity. , 2012, , .		0

#	Article	IF	CITATIONS
109	Bidirectional Hybrid OFDM-WDM-PON System for 40-Gb/s Downlink and 10-Gb/s Uplink Transmission Using RSOA Remodulation. IEEE Photonics Technology Letters, 2012, 24, 2024-2026.	1.3	23
110	Chromatic Dispersion Monitoring Based on Variance of Received Optical Power. IEEE Photonics Technology Letters, 2011, 23, 486-488.	1.3	9
111	PMD-Insensitive CD Monitoring Based on RF Clock Power Ratio Measurement With Optical Notch Filter. IEEE Photonics Technology Letters, 2011, 23, 1576-1578.	1.3	8
112	Linear RF photonics phase shifter based on polarization sensitive optical phase modulator., 2010,,.		1
113	A novel dispersion monitoring scheme by evaluating eye diagram for 100Gbit/s CS-RZ DQPSK systems. , 2010, , .		0
114	Statistical Analysis of Optical Signal-to-Noise Ratio Monitoring Using Delay-Tap Sampling. IEEE Photonics Technology Letters, 2010, 22, 149-151.	1.3	23
115	OSNR Monitoring for RZ-DQPSK Systems Using Half-Symbol Delay-Tap Sampling Technique. IEEE Photonics Technology Letters, 2010, 22, 823-825.	1.3	32
116	Chromatic dispersion monitoring of DQPSK and D8PSK signals based on delay-tap sampling technique. , 2010, , .		3
117	Signed chromatic dispersion monitoring of 100Gbit/s CS-RZ DQPSK signal by evaluating the asymmetry ratio of delay tap sampling. Optics Express, 2010, 18, 3149.	1.7	22
118	Linear photonic radio frequency phase shifter using a differential-group-delay element and an optical phase modulator. Optics Letters, 2010, 35, 1881.	1.7	32
119	PMD insensitive CD monitoring based on RF power ratio in D8PSK and DQPSK systems. , 2010, , .		1
120	Demonstration of transmission of 8×100Gb/s CSRZ-DQPSK signal over 1520Km standard single-mode fiber. , 2009, , .		0
121	Optical signal monitoring for 10 Gb/s NRZ WDM transmission system using cross-correlation method. , 2009, , .		0
122	Optical signal monitoring of DPSK signals using RF power detection. , 2008, , .		1