Chih-Ming Kao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5339796/publications.pdf

Version: 2024-02-01

147566 243296 2,373 93 31 citations h-index papers

g-index 93 93 93 2570 docs citations times ranked citing authors all docs

44

#	Article	IF	CITATIONS
1	In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Research, 2011, 45, 2496-2506.	5.3	92
2	Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study. Journal of Hazardous Materials, 2008, 153, 919-927.	6.5	89
3	Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research, 2003, 37, 27-38.	5.3	86
4	Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. Journal of Hazardous Materials, 2009, 170, 466-472.	6.5	85
5	Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere, 2016, 164, 558-567.	4.2	82
6	The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. Journal of Hazardous Materials, 2016, 302, 144-150.	6.5	80
7	Investigation of COD and COD/N ratio for the dominance of anammox pathway for nitrogen removal via isotope labelling technique and the relevant bacteria. Journal of Hazardous Materials, 2019, 366, 606-614.	6.5	61
8	Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Science of the Total Environment, 2018, 612, 1463-1472.	3.9	60
9	Evaluation of natural attenuation rate at a gasoline spill site. Journal of Hazardous Materials, 2001, 82, 275-289.	6.5	59
10	Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. Journal of Hazardous Materials, 2010, 178, 409-416.	6.5	59
11	Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Research, 2000, 34, 3413-3423.	5.3	56
12	Development of KMnO4-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater. Water Research, 2014, 54, 149-158.	5.3	55
13	Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidationâ€"A laboratory feasibility study. Journal of Hazardous Materials, 2009, 171, 571-576.	6.5	54
14	Distribution, sources, and behavior of PAHs in estuarine water systems exemplified by Salt River, Taiwan. Marine Pollution Bulletin, 2020, 154, 111029.	2.3	53
15	Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. Journal of Hazardous Materials, 2010, 177, 856-863.	6.5	52
16	Enhanced TCDD degradation by Fenton's reagent preoxidation. Journal of Hazardous Materials, 2000, 74, 197-211.	6.5	51
17	Development of a water quality modeling system for river pollution index and suspended solid loading evaluation. Journal of Hydrology, 2013, 478, 89-101.	2.3	48
18	Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater. Journal of Hazardous Materials, 2011, 185, 1162-1168.	6.5	47

#	Article	IF	CITATIONS
19	Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desalination, 2011, 278, 203-210.	4.0	46
20	Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Research, 2003, 37, 4885-4894.	5.3	43
21	Application of a constructed wetland system for polluted stream remediation. Journal of Hydrology, 2014, 510, 70-78.	2.3	43
22	Decadal changes in nutrient fluxes and environmental effects in the Jiulong River Estuary. Marine Pollution Bulletin, 2017, 124, 871-877.	2.3	42
23	Remediation of Fuel Oil-Contaminated Soils by a Three-Stage Treatment System. Environmental Engineering Science, 2009, 26, 651-659.	0.8	41
24	Selective and adsorptive removal of anionic dyes and CO2 with azolium-based metal-organic frameworks. Journal of Colloid and Interface Science, 2018, 519, 214-223.	5.0	41
25	Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water Research, 2000, 34, 835-845.	5.3	40
26	Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environmental Science and Pollution Research, 2018, 25, 5231-5242.	2.7	39
27	Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Chemosphere, 2020, 256, 127158.	4.2	39
28	Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. Journal of Hazardous Materials, 2015, 284, 222-232.	6.5	38
29	Development of the sediment and water quality management strategies for the Salt-water River, Taiwan. Marine Pollution Bulletin, 2011, 63, 528-534.	2.3	34
30	Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate. Journal of Cleaner Production, 2018, 178, 108-118.	4.6	34
31	Effectiveness of AOC removal by advanced water treatment systems: a case study. Desalination, 2007, 202, 318-325.	4.0	31
32	Thermophilic Biodegradation of Diesel Oil in Food Waste Composting Processes Without Bioaugmentation. Environmental Engineering Science, 2012, 29, 117-123.	0.8	31
33	Novel rapid room temperature synthesis of conjugated microporous polymer for metal-free photocatalytic degradation of fluoroquinolones. Journal of Hazardous Materials, 2020, 398, 122928.	6.5	31
34	Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill. Waste Management, 2014, 34, 1156-1164.	3.7	30
35	Application of natural attenuation for the control of petroleum hydrocarbon plume: Mechanisms and effectiveness evaluation. Journal of Hydrology, 2013, 505, 126-137.	2.3	29
36	2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells. Scientific Reports, 2017, 7, 8148.	1.6	27

3

#	Article	IF	Citations
37	Application of sulfate reduction mechanisms for the simultaneous bioremediation of toluene and copper contaminated groundwater. International Biodeterioration and Biodegradation, 2017, 124, 215-222.	1.9	26
38	Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: A pilot-scale study. Journal of Hazardous Materials, 2014, 268, 92-101.	6.5	25
39	Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan. Journal of Hydrology, 2015, 525, 400-408.	2.3	25
40	Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: Microcosm, pilot-scale, and gene studies. Journal of Hazardous Materials, 2014, 278, 433-443.	6.5	23
41	Impact of disposal of dredged material on sediment quality in the Kaohsiung Ocean Dredged Material Disposal Site, Taiwan. Chemosphere, 2018, 191, 555-565.	4.2	23
42	Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Water Research, 2001, 35, 1951-1960.	5. 3	19
43	Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment. Ecotoxicology and Environmental Safety, 2017, 138, 39-46.	2.9	19
44	Use of specific gene analysis to assess the effectiveness of surfactant-enhanced trichloroethylene cometabolism. Journal of Hazardous Materials, 2011, 198, 323-330.	6.5	18
45	Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT-contaminated soil, and their application in TNT bioremediation. Bioremediation Journal, 2016, 20, 165-173.	1.0	18
46	Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control – A field-scale study. Science of the Total Environment, 2019, 666, 839-848.	3.9	18
47	Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. Chemosphere, 2020, 238, 124596.	4.2	18
48	Application of enhanced bioreduction for hexavalent chromium-polluted groundwater cleanup: Microcosm and microbial diversity studies. Environmental Research, 2020, 184, 109296.	3.7	18
49	Quantifying N2O emissions and production pathways from fresh waste during the initial stage of disposal to a landfill. Waste Management, 2017, 63, 3-10.	3.7	17
50	Growth inhibition of sulfate-reducing bacteria for trichloroethylene dechlorination enhancement. Environmental Research, 2020, 187, 109629.	3.7	17
51	Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study. Environmental Monitoring and Assessment, 2009, 153, 127-138.	1.3	15
52	Development of a three-stage system for the treatment and reclamation of wastewater containing nano-scale particles. Desalination, 2012, 284, 182-190.	4.0	15
53	Cationic nickel metal-organic frameworks for adsorption of negatively charged dye molecules. Data in Brief, 2018, 18, 1952-1961.	0.5	14
54	Treatment of petroleum hydrocarbon-polluted groundwater with innovative in situ sulfate-releasing biobarrier. Journal of Cleaner Production, 2021, 295, 126424.	4.6	14

#	Article	IF	Citations
55	Developing an Integrated Modeling Tool for River Water Quality Index Assessment. Water Environment Research, 2017, 89, 260-273.	1.3	12
56	Application of enhanced bioremediation for TCE-contaminated groundwater: a pilot-scale study. Desalination and Water Treatment, 2012, 41, 364-371.	1.0	11
57	Copper promotes E. coli laccase-mediated TNT biotransformation and alters the toxicity of TNT metabolites toward Tigriopus japonicus. Ecotoxicology and Environmental Safety, 2019, 173, 452-460.	2.9	11
58	Biodegradation of tetracyanonickelate by Klebsiella oxytoca under anaerobic conditions. Desalination, 2009, 249, 1212-1216.	4.0	10
59	Bioremediation of 2,4,6-trinitrotoluene-contaminated groundwater using unique bacterial strains: microcosm and mechanism studies. International Journal of Environmental Science and Technology, 2016, 13, 1357-1366.	1.8	10
60	Using desulfurization slag as the aquacultural amendment for fish pond water quality improvement: Mechanisms and effectiveness studies. Journal of Cleaner Production, 2017, 143, 1313-1326.	4.6	10
61	Cleanup chlorinated ethene-polluted groundwater using an innovative immobilized Clostridium butyricum column scheme: A pilot-scale study. Journal of Environmental Management, 2022, 311, 114836.	3.8	10
62	Application of integrated GIS and multimedia modeling on NPS pollution evaluation. Environmental Monitoring and Assessment, 2009, 158, 319-331.	1.3	9
63	Rapid nonylphenol degradation in wastewater sludge using microwave peroxide oxidation with nitric acid. Environmental Progress and Sustainable Energy, 2015, 34, 520-525.	1.3	9
64	Application of an aquatic plant ecosystem for swine wastewater polishment: a full-scale study. Desalination and Water Treatment, 2016, 57, 21243-21252.	1.0	8
65	Development of water and sediment quality management strategies for an urban river basin: a case study in Taiwan. Journal of Water Supply: Research and Technology - AQUA, 2018, 67, 810-823.	0.6	8
66	The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. Science of the Total Environment, 2021, 758, 143597.	3.9	8
67	Remediation of weathered diesel-oil contaminated soils using biopile systems: An amendment selection and pilot-scale study. Science of the Total Environment, 2021, 786, 147395.	3.9	7
68	Spatiotemporal Variation and Ecological Risk Assessment of Heavy Metals in Industrialized Urban River Sediments: Fengshan River in Southern Taiwan as a Case Study. Applied Sciences (Switzerland), 2022, 12, 1013.	1.3	7
69	Developing Nonpointâ€Source Suspended Solids Control Strategies Using Multimedia Watershed Management Modeling. Water Environment Research, 2010, 82, 2205-2218.	1.3	6
70	Control of trichloroethylene plume migration using a biobarrier system: a field-scale study. Water Science and Technology, 2014, 69, 2074-2078.	1.2	6
71	Long-term dechlorination of cis-DCE to ethene with co-immobilized Dehalococcoides mccartyi BAV1 and Clostridium butyricum in silica gel system. Journal of Hazardous Materials, 2022, 430, 128355.	6.5	6
72	Seasonal Variation of Phthalate Esters in Urban River Sediments: A Case Study of Fengshan River System in Taiwan. Sustainability, 2022, 14, 347.	1.6	6

#	Article	IF	CITATIONS
73	Using a systematic approach to develop water quality management strategies in the Nankan River, Taiwan. Desalination and Water Treatment, 2013, 51, 6808-6823.	1.0	5
74	Application of a three-stage remediation process to cleanup petroleum-hydrocarbon contaminated sediments. Desalination and Water Treatment, 2015, 56, 435-442.	1.0	5
75	Remediation of TCE-contaminated groundwater using KMnO4 oxidation: laboratory and field-scale studies. Environmental Science and Pollution Research, 2019, 26, 34027-34038.	2.7	5
76	Application of zeolitic imidazolate framework for hexavalent chromium removal: A feasibility and mechanism study. Water Environment Research, 2021, 93, 1995-2009.	1.3	5
77	Bioremediation of hexavalent-chromium contaminated groundwater: Microcosm, column, and microbial diversity studies. Chemosphere, 2022, 295, 133877.	4.2	5
78	Recovery of chlorinated solvent trichloroethylene contaminated groundwater using a hybrid treatment system. International Journal of Environmental Science and Technology, 2014, 11, 149-158.	1.8	4
79	Bioremediation of trichloroethyleneâ€polluted groundwater using emulsified castor oil for slow carbon release and acidification control. Water Environment Research, 2022, 94, e1673.	1.3	4
80	Aerobic Biodegradation of OCDD by P. Mendocina NSYSU: Effectiveness and Gene Inducement Studies. Water Environment Research, 2017, 89, 2113-2121.	1.3	3
81	Biotransformation of trinitrotoluene by Citrobacter sp. YC4 and evaluation of its cyto-toxicological effects. FEMS Microbiology Letters, 2018, 365, .	0.7	3
82	Application of slow-releasing green denaturing colloidal substrates to contain and bioremediate hexavalent-chromium plume. Journal of Cleaner Production, 2022, 365, 132769.	4.6	3
83	Development of a two-stage washing and biodegradation system to remediate octachlorinated dibenzo-p-dioxin-contaminated soils. International Journal of Environmental Science and Technology, 2017, 14, 1919-1930.	1.8	2
84	Water quality management in the Kaoping River watershed, Taiwan. Water Science and Technology, 2003, 47, 209-16.	1.2	2
85	Pressure-assisted cyclic washing of heavy-metal-contaminated sediments. International Journal of Environmental Science and Technology, 2014, 11, 1017-1026.	1.8	1
86	Characterization of released metabolic organics during AOC analyses by P17 and NOX strains using 3-D fluorescent signals. Chemosphere, 2019, 222, 205-213.	4.2	1
87	Application of slow-release materials for inÂsitu and passive remediation of contaminated groundwater. , 2020, , 169-199.		1
88	Development of Kaoping River Basin Management Strategies Based on Calculated Carrying Capacity., 2003,, 199.		0
89	Preparation of Crystalline Nanosized Titania by Microemulsion: Evaluation of Process Variables. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	0
90	Editorial. Water Environment Research, 2020, 92, 4-4.	1.3	O

#	Article	IF	CITATIONS
91	Application of High-Resolution Site Characterization for Contaminated Land Investigation. Journal of Environmental Engineering, ASCE, 2021, 147, 01821004.	0.7	0
92	Knowledge gaps and research needs on microplastics. Water Environment Research, 2021, 93, 4-4.	1.3	0
93	Characterization of two chromate reducing bacteria isolated from heavy metal contaminated soil. Biologia (Poland), 2021, 76, 3909-3917.	0.8	O