
Marcello Ruta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5339509/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs. Science, 2008, 321, 1485-1488.	6.0	361
2	Dinosaurs and the Cretaceous Terrestrial Revolution. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2483-2490.	1.2	274
3	Early tetrapod relationships revisited. Biological Reviews, 2003, 78, 251-345.	4.7	246
4	Dates, nodes and character conflict: Addressing the Lissamphibian origin problem. Journal of Systematic Palaeontology, 2007, 5, 69-122.	0.6	186
5	The evolution of Metriorhynchoidea (mesoeucrocodylia, thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zoological Journal of the Linnean Society, 2010, 158, 801-859.	1.0	183
6	Evolutionary patterns in early tetrapods. I. Rapid initial diversification followed by decrease in rates of character change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2107-2111.	1.2	146
7	The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biology Letters, 2008, 4, 733-736.	1.0	114
8	Fins to limbs: what the fossils say1. Evolution & Development, 2002, 4, 390-401.	1.1	113
9	Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8339-8344.	3.3	100
10	The radiation of cynodonts and the ground plan of mammalian morphological diversity. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131865.	1.2	97
11	Ever Since Owen: Changing Perspectives on the Early Evolution of Tetrapods. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 571-592.	3.8	82
12	Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131071.	1.2	73
13	What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation. BMC Evolutionary Biology, 2015, 15, 153.	3.2	71
14	The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 372, 18-41.	1.0	69
15	Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nature Ecology and Evolution, 2017, 1, 2.	3.4	69
16	A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3087-3095.	1.2	68
17	The disparity of priapulid, archaeopriapulid and palaeoscolecid worms in the light of new data. Journal of Evolutionary Biology, 2012, 25, 2056-2076.	0.8	68
18	Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2010, 101, 367-382.	0.3	62

MARCELLO RUTA

#	Article	IF	CITATIONS
19	Evolutionary patterns in early tetrapods. II. Differing constraints on available character space among clades. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2113-2118.	1.2	59
20	A supertree of early tetrapods. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2507-2516.	1.2	57
21	Convergence and Divergence in the Evolution of Cat Skulls: Temporal and Spatial Patterns of Morphological Diversity. PLoS ONE, 2012, 7, e39752.	1.1	57
22	Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction. Scientific Reports, 2016, 6, 24053.	1.6	53
23	CALIBRATED DIVERSITY, TREE TOPOLOGY AND THE MOTHER OF MASS EXTINCTIONS: THE LESSON OF TEMNOSPONDYLS. Palaeontology, 2008, 51, 1261-1288.	1.0	52
24	Evolution of morphological disparity in pterosaurs. Journal of Systematic Palaeontology, 2011, 9, 337-353.	0.6	49
25	Nice snake, shame about the legs. Trends in Ecology and Evolution, 2000, 15, 503-507.	4.2	48
26	Amniotes through major biological crises: faunal turnover among Parareptiles and the endâ€Permian mass extinction. Palaeontology, 2011, 54, 1117-1137.	1.0	48
27	Late to the Table: Diversification of Tetrapod Mandibular Biomechanics Lagged Behind the Evolution of Terrestriality. Integrative and Comparative Biology, 2013, 53, 197-208.	0.9	47
28	GEOMETRIC MORPHOMETRICS OF THE SKULL ROOF OF STEREOSPONDYLS (AMPHIBIA: TEMNOSPONDYLI). Palaeontology, 2006, 49, 307-337.	1.0	46
29	Feeding biomechanics in <i>Acanthostega</i> and across the fish–tetrapod transition. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132689.	1.2	45
30	Do cladistic and morphometric data capture common patterns of morphological disparity?. Palaeontology, 2015, 58, 393-399.	1.0	45
31	Egg shape changes at the theropod–bird transition, and a morphometric study of amniote eggs. Royal Society Open Science, 2014, 1, 140311.	1.1	41
32	Geometric morphometrics for the study of facial expressions in non-human animals, using the domestic cat as an exemplar. Scientific Reports, 2019, 9, 9883.	1.6	40
33	A review of <i>Silvanerpeton miripedes</i> , a stem amniote from the Lower Carboniferous of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2006, 97, 31-63.	1.0	35
34	Morphological diversity and biogeography of procolophonids (Amniota: Parareptilia). Journal of Systematic Palaeontology, 2010, 8, 607-625.	0.6	34
35	Brief review of the stylophoran debate. Evolution & Development, 1999, 1, 123-135.	1.1	32
36	Elevated Extinction Rates as a Trigger for Diversification Rate Shifts: Early Amniotes as a Case Study. Scientific Reports, 2015, 5, 17104.	1.6	27

MARCELLO RUTA

#	Article	lF	CITATIONS
37	A reassessment of the temnospondyl amphibian <i>Perryella olsoni</i> from the Lower Permian of Oklahoma. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2006, 97, 113-165.	1.0	26
38	Stepwise evolution of Paleozoic tracheophytes from South China: Contrasting leaf disparity and taxic diversity. Earth-Science Reviews, 2015, 148, 77-93.	4.0	25
39	A cladistic analysis of the anomalocystitid mitrates. Zoological Journal of the Linnean Society, 1999, 127, 345-421.	1.0	23
40	Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapodGephyrostegus bohemicusJaekel, 1902. Journal of Vertebrate Paleontology, 2014, 34, 774-792.	0.4	23
41	Extreme and rapid bursts of functional adaptations shape bite force in amniotes. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20181932.	1.2	23
42	<i>Acherontiscus caledoniae</i> : the earliest heterodont and durophagous tetrapod. Royal Society Open Science, 2019, 6, 182087.	1.1	23
43	Early tetrapod evolution. Trends in Ecology and Evolution, 2000, 15, 327-328.	4.2	22
44	A new species of <i>Varanus</i> (Anguimorpha: Varanidae) from the early Miocene of the Czech Republic, and its relationships and palaeoecology. Journal of Systematic Palaeontology, 2018, 16, 767-797.	0.6	22
45	Morphospace occupation of temnospondyl growth series: a geometric morphometric approach. Alcheringa, 2009, 33, 237-255.	0.5	21
46	Comparable disparity in the appendicular skeleton across the fish–tetrapod transition, and the morphological gap between fish and tetrapod postcrania. Palaeontology, 2016, 59, 249-267.	1.0	21
47	Evolution of parental incubation behaviour in dinosaurs cannot be inferred from clutch mass in birds. Biology Letters, 2013, 9, 20130036.	1.0	20
48	The seymouriamorph tetrapod <i>Utegenia shpinari</i> from the ?Upper Carboniferous–Lower Permian of Kazakhstan. Part I: Cranial anatomy and ontogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2003, 94, 45-74.	1.0	18
49	Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographical implications. Palaeontology, 2016, 59, 689-724.	1.0	18
50	Morphology of the earliest reconstructable tetrapod Parmastega aelidae. Nature, 2019, 574, 527-531.	13.7	18
51	Inner ear morphology of diadectomorphs and seymouriamorphs (Tetrapoda) uncovered by highâ€resolution xâ€ray microcomputed tomography, and the origin of the amniote crown group. Palaeontology, 2020, 63, 131-154.	1.0	17
52	The Fossil Record of Early Tetrapods: Worker Effort and the End-Permian Mass Extinction. Acta Palaeontologica Polonica, 2010, 55, 229-239.	0.4	17
53	The tetrapod <i>Caerorhachis bairdi</i> Holmes and Carroll from the Lower Carboniferous of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2001, 92, 229-261.	1.0	16
54	The seymouriamorph tetrapod <i>Ariekanerpeton sigalovi</i> from the Lower Permian of Tadzhikistan. Part I: Cranial anatomy and ontogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2005, 96, 43-70.	1.0	16

MARCELLO RUTA

#	Article	IF	CITATIONS
55	Effects of phylogeny and locomotor style on the allometry of body mass and pelvic dimensions in birds. Journal of Anatomy, 2017, 231, 342-358.	0.9	16
56	The BrachyopoidHadrokkosaurus bradyifrom the Early Middle Triassic of Arizona, and a Phylogenetic Analysis of Lower Jaw Characters in Temnospondyl Amphibians. Acta Palaeontologica Polonica, 2008, 53, 579-592.	0.4	14
57	The seymouriamorph tetrapod <i>Utegenia shpinari</i> from the ?Upper Carboniferous–Lower Permian of Kazakhstan. Part II: Postcranial anatomy and relationships. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2003, 94, 75-93.	1.0	13
58	The Roots of Amphibian Morphospace: A Geometric Morphometric Analysis of Paleozoic Temnospondyls. Fieldiana: Life and Earth Sciences, 2012, 5, 40-58.	1.0	13
59	The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 351-369.	0.3	13
60	Categorical versus geometric morphometric approaches to characterizing the evolution of morphological disparity in Osteostraci (Vertebrata, stem Gnathostomata). Palaeontology, 2020, 63, 717-732.	1.0	10
61	Molecular phylogenies map to biogeography better than morphological ones. Communications Biology, 2022, 5, .	2.0	10
62	The seymouriamorph tetrapod <i>Ariekanerpeton sigalovi</i> from the Lower Permian of Tadzhikistan. Part II: Postcranial anatomy and relationships. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2005, 96, 71-93.	1.0	9
63	First record of the mitrateBarrandeocarpus from England. Palaontologische Zeitschrift, 1997, 71, 97-105.	0.8	8
64	Craniodental and Postcranial Characters of Non-Avian Dinosauria Often Imply Different Trees. Systematic Biology, 2020, 69, 638-659.	2.7	8
65	Redescription of the Australian mitrate <i>Victoriacystis</i> with comments on its functional morphology. Alcheringa, 1997, 21, 81-101.	0.5	7
66	Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods. Systematic Biology, 2016, 65, 737-758.	2.7	6
67	A review of the stem amniote Eldeceeon rolfei from the Viséan of East Kirkton, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2020, 111, 173-192.	0.3	4
68	Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 424, 132-146.	1.0	3
69	Braincase and Inner Ear Anatomy of the Late Carboniferous Tetrapod Limnoscelis dynatis (Diadectomorpha) Revealed by High-Resolution X-ray Microcomputed Tomography. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
70	Evolutionary changes in the orbits and palatal openings of early tetrapods, with emphasis on temnospondyls. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 333-350.	0.3	2
71	Using Patterns of Fin and Limb Phylogeny to Test Developmental-Evolutionary Scenarios. Novartis Foundation Symposium, 2007, 284, 245-261.	1.2	2
72	A Mississippian (early Carboniferous) tetrapod showing early diversification of the hindlimbs. Communications Biology, 2022, 5, 283.	2.0	2

#	ARTICLE	IF	CITATIONS
73	Fossils, function and phylogeny: Papers on early vertebrate evolution in honour of Professor Jennifer A. Clack – Introduction. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 1-14.	0.3	1