Sara Amorim

List of Publications by Citations

Source: https://exaly.com/author-pdf/5339450/sara-amorim-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19 305 8 17 g-index

21 394 7 avg, IF L-index

#	Paper	IF	Citations
19	Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. <i>Acta Biomaterialia</i> , 2016 , 33, 203-12	10.8	61
18	Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. <i>Applied Surface Science</i> , 2019 , 486, 499-507	6.7	41
17	Hyaluronic acid/poly-l-lysine bilayered silica nanoparticles enhance the osteogenic differentiation of human mesenchymal stem cells. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 6939-6946	7.3	36
16	Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. <i>Trends in Biotechnology</i> , 2021 , 39, 90-104	15.1	34
15	Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. <i>Scientific Reports</i> , 2018 , 8, 16058	4.9	33
14	Interactions between exogenous FGF-2 and sulfonic groups: in situ characterization and impact on the morphology of human adipose-derived stem cells. <i>Langmuir</i> , 2013 , 29, 7983-92	4	25
13	Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3880-3885	7.3	17
12	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 167, 310-317	6	10
11	The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2104-2115	7-3	8
10	3D hydrogel mimics of the tumor microenvironment: the interplay among hyaluronic acid, stem cells and cancer cells. <i>Biomaterials Science</i> , 2021 , 9, 252-260	7.4	8
9	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. <i>Biomacromolecules</i> , 2020 , 21, 3582-3595	6.9	6
8	Surfaces Mimicking Glycosaminoglycans Trigger Different Response of Stem Cells via Distinct Fibronectin Adsorption and Reorganization. <i>ACS Applied Materials & Distinct States and Property and Propert</i>	3 6 :5	6
7	Nanocomposites of poly(Eaprolactone) doped with titanium species. <i>Journal of Materials Science</i> , 2013 , 48, 3578-3585	4.3	5
6	Hyaluronic Acid of Low Molecular Weight Triggers the Invasive "Hummingbird" Phenotype on Gastric Cancer Cells. <i>Advanced Biology</i> , 2020 , 4, e2000122	3.5	5
5	Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. <i>Materials Science and Engineering C</i> , 2021 , 119, 111616	8.3	4
4	Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. <i>Biomacromolecules</i> , 2020 , 21, 4771-4780	6.9	3
3	Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. <i>Materials Science and Engineering C</i> , 2021 , 126, 112124	8.3	3

LIST OF PUBLICATIONS

- Forecast cancer: the importance of biomimetic 3D in vitro models in cancer drug testing/discovery and therapy. *In Vitro Models*,1
- Hyaluronan-Based Hydrogels as Modulators of Cellular Behavior **2022**, 217-232