Robert G Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5338180/publications.pdf

Version: 2024-02-01

61 4,168 22
papers citations h-index

304743 133252 59
h-index g-index

61 61 docs citations

61 times ranked 3627 citing authors

#	Article	IF	CITATIONS
1	Climate change: Aerial insectivores struggle to keep pace with earlier pulses of nutritious aquatic foods. Current Biology, 2022, 32, R267-R269.	3.9	2
2	Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecological Applications, 2021, 31, e2258.	3.8	19
3	Prefledging Growth and Recruitment of Female Lesser Scaup. Journal of Wildlife Management, 2021, 85, 740-750.	1.8	2
4	Plasticity in timing of avian breeding in response to spring temperature differs between early and late nesting species. Scientific Reports, 2021, 11, 5410.	3.3	5
5	Pre-fledging quality and recruitment in an aerial insectivore reflect dynamics of insects, wetlands and climate. Oecologia, 2021, 196, 89-100.	2.0	15
6	Phenotypic differences among wild passerine nestlings in relation to early-life rearing environment. Canadian Journal of Zoology, 2021, 99, 876-884.	1.0	3
7	Climate variability has idiosyncratic impacts on North American aerial insectivorous bird population trajectories. Biological Conservation, 2021, 263, 109329.	4.1	7
8	Experimental Evaluation of \hat{i} 2H, \hat{i} 13C and \hat{i} 15N Variability in Blood and Feathers of Wild and Captive Birds: Implications for Interspecific Food Web Studies. Diversity, 2021, 13, 495.	1.7	1
9	Synthesis of science: findings on Canadian Prairie wetland drainage. Canadian Water Resources Journal, 2021, 46, 229-241.	1.2	15
10	Cavity type influences abundance of nestâ€dwelling avian blow flies: an experiment with tree swallows. Ecological Entomology, 2020, 45, 434-443.	2.2	4
11	Tree Swallow selection for wetlands in agricultural landscapes predicted by central-place foraging theory. Condor, 2020, 122, .	1.6	16
12	The relative contribution of individual quality and changing climate as drivers of lifetime reproductive success in a short-lived avian species. Scientific Reports, 2020, 10, 19766.	3.3	11
13	Reproductive consequences of climate variability in migratory birds: evidence for species-specific responses to spring phenology and cross-seasonal effects. Oecologia, 2019, 191, 217-229.	2.0	7
14	Prairie water: a global water futures project to enhance the resilience of prairie communities through sustainable water management. Canadian Water Resources Journal, 2019, 44, 115-126.	1.2	12
15	Antagonistic, synergistic and direct effects of land use and climate on Prairie wetland ecosystems: Ghosts of the past or present?. Diversity and Distributions, 2019, 25, 1924-1940.	4.1	12
16	Constructing and evaluating a continentâ€wide migratory songbird network across the annual cycle. Ecological Monographs, 2018, 88, 445-460.	5.4	58
17	Geographic variation and environmental correlates of apparent survival rates in adult tree swallows <i>Tachycineta bicolor</i> . Journal of Avian Biology, 2018, 49, jav-012514.	1.2	27
18	Biomarker of burden: Feather corticosterone reflects energetic expenditure and allostatic overload in captive waterfowl. Functional Ecology, 2018, 32, 345-357.	3.6	21

#	Article	IF	Citations
19	Agricultural land cover does not affect the diet of Tree Swallows in wetland-dominated habitats. Condor, 2018, 120, 751-764.	1.6	26
20	Intensive agriculture and insect prey availability influence oxidative status and return rates of an aerial insectivore. Ecosphere, 2017, 8, e01746.	2.2	17
21	Integrated population models reveal local weather conditions are the key drivers of population dynamics in an aerial insectivore. Oecologia, 2017, 185, 119-130.	2.0	56
22	Seasonal patterns in reproductive success of temperateâ€breeding birds: Experimental tests of the date and quality hypotheses. Ecology and Evolution, 2017, 7, 2122-2132.	1.9	44
23	Relationships between abundances of breeding ducks and attributes of Canadian prairie wetlands. Wildlife Society Bulletin, 2017, 41, 416-423.	1.6	5
24	Differences in spatial synchrony and interspecific concordance inform guildâ€level population trends for aerial insectivorous birds. Ecography, 2016, 39, 774-786.	4.5	80
25	Integrated population modeling to assess demographic variation and contributions to population growth for endangered whooping cranes. Biological Conservation, 2016, 197, 1-7.	4.1	36
26	Assessing costs of carrying geolocators using feather corticosterone in two species of aerial insectivore. Royal Society Open Science, 2015, 2, 150004.	2.4	22
27	Effects of geolocators on reproductive performance and annual return rates of a migratory songbird. Journal of Ornithology, 2014, 155, 37-44.	1.1	28
28	Integrating information from geolocators, weather radar, and citizen science to uncover a key stopover area of an aerial insectivore. Auk, 2013, 130, 230-239.	1.4	51
29	Radiomarking broodâ€rearing mallard females: Implications for juvenile survival. Wildlife Society Bulletin, 2012, 36, 582-586.	1.6	2
30	Spatiotemporal Patterns in Nest Box Occupancy by Tree Swallows Across North America. Avian Conservation and Ecology, 2012, 7, .	0.8	53
31	Landscapeâ€level correlates of mallard duckling survival: Implications for conservation programs. Journal of Wildlife Management, 2012, 76, 813-823.	1.8	20
32	Population vulnerability to climate change linked to timing of breeding in boreal ducks. Global Change Biology, 2012, 18, 480-492.	9.5	52
33	Seasonal variation in preâ€fledging survival of lesser scaup <i>Aythya affinis</i> : hatch date effects depend on maternal body mass. Journal of Avian Biology, 2012, 43, 68-78.	1.2	11
34	Social and habitat correlates of immigrant recruitment of yearling female Mallards to breeding locations. Journal of Ornithology, 2011, 152, 781-791.	1.1	6
35	Combining Stable-Isotope and Body-Composition Analyses to Assess Nutrient-Allocation Strategies in Breeding White-Winged Scoters (<i>Melanitta fusca</i>). Auk, 2011, 128, 166-174.	1.4	12
36	Trends in agricultural impact and recovery of wetlands in prairie Canada. Ecological Applications, 2010, 20, 525-538.	3.8	71

3

#	Article	IF	Citations
37	Nest-site materials affect nest-bowl use by Common Eiders (<i>Somateria mollissima</i>). Canadian Journal of Zoology, 2010, 88, 214-218.	1.0	14
38	Temporal Sources of Deuterium ($\hat{\Gamma}$ D) Variability in Waterfowl Feathers Across a Prairie-to-Boreal Gradient. Condor, 2009, 111, 255-265.	1.6	20
39	AN INTEGRATED CAPTURE–RECAPTURE AND STABLE-ISOTOPE APPROACH TO MODELING SOURCES OF POPULATION RESCUE. Auk, 2008, 125, 923-931.	1.4	2
40	ARE LATE-SPRING BOREAL LESSER SCAUP (AYTHYA AFFINIS) IN POOR BODY CONDITION?. Auk, 2008, 125, 291-298.	1.4	15
41	Wetland use by white-winged scoters (Melanitta fusca) in the Mackenzie Delta region. Wetlands, 2007, 27, 855-863.	1.5	10
42	HOME-RANGE CHARACTERISTICS, AGE, BODY SIZE, AND BREEDING PERFORMANCE OF FEMALE MALLARDS (ANAS PLATYRHYNCHOS). Auk, 2006, 123, 467.	1.4	15
43	TIME AND RECRUITMENT COSTS AS CURRENCIES IN MANIPULATION STUDIES ON THE COSTS OF REPRODUCTION. Ecology, 2006, 87, 2938-2946.	3.2	68
44	Decline of Duck Nest Success Revisited: Relationships With Predators and Wetlands in Dynamic Prairie Environments. Auk, 2004, 121, 497-508.	1.4	0
45	CAUSES AND CONSEQUENCES OF TREE SWALLOW (TACHYCINETA BICOLOR) DISPERSAL IN SASKATCHEWAN. Auk, 2003, 120, 619.	1.4	46
46	Causes and Consequences of Tree Swallow (Tachycineta Bicolor) Dispersal in Saskatchewan. Auk, 2003, 120, 619-631.	1.4	3
47	Consequences of Egg Size for Offspring Survival: A Cross-Fostering Experiment in Ruddy Ducks (Oxyura Jamaicensis). Auk, 2003, 120, 384-393.	1.4	6
48	VARIATION IN SIZE, COMPOSITION, AND QUALITY OF RUDDY DUCK EGGS AND DUCKLINGS. Condor, 2002, 104, 457.	1.6	7
49	DIFFERENTIAL SURVIVAL OF YEARLING AND ADULT FEMALE MALLARDS AND ITS RELATION TO BREEDING HABITAT CONDITIONS. Condor, 2002, 104, 297.	1.6	37
50	Differential Survival of Yearling and Adult Female Mallards and its Relation to Breeding Habitat Conditions. Condor, 2002, 104, 297-308.	1.6	37
51	Variation in Size, Composition, and Quality of Ruddy Duck Eggs and Ducklings. Condor, 2002, 104, 457-462.	1.6	12
52	Patterns of reproductive effort and success in birds: path analyses of long-term data from European ducks. Journal of Animal Ecology, 2002, 71, 280-295.	2.8	106
53	Nesting Effort of Northern Pintails in Alberta. Condor, 2000, 102, 619-628.	1.6	18
54	NESTING EFFORT OF NORTHERN PINTAILS IN ALBERTA. Condor, 2000, 102, 619.	1.6	12

#	Article	IF	CITATIONS
55	AVIAN HABITAT SELECTION: PATTERN FROM PROCESS IN NEST-SITE USE BY DUCKS?. Ecology, 1999, 80, 272-287.	3.2	306
56	AVIAN HABITAT SELECTION: PATTERN FROM PROCESS IN NEST-SITE USE BY DUCKS?. , 1999, 80, 272.		1
57	Effects of variation in egg size and hatching date on survival of Lesser Scaup <i>Aythya affinis</i> ducklings. lbis, 1996, 138, 693-699.	1.9	72
58	Stable-Nitrogen Isotope Enrichment in Avian Tissues Due to Fasting and Nutritional Stress: Implications for Isotopic Analyses of Diet. Condor, 1993, 95, 388.	1.6	730
59	Assessing Avian Diets Using Stable Isotopes I: Turnover of 13C in Tissues. Condor, 1992, 94, 181-188.	1.6	1,026
60	Assessing Avian Diets Using Stable Isotopes II: Factors Influencing Diet-Tissue Fractionation. Condor, 1992, 94, 189-197.	1.6	727
61	The Significance of Body Mass to Female Dabbling Ducks during Late Incubation. Condor, 1991, 93, 811.	1.6	49