Anna M Planas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5337646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	11.9	35
2	Arachnoid membrane as a source of sphingosine-1-phosphate that regulates mouse middle cerebral artery tone. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 162-174.	4.3	2
3	A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 159-164.	14.5	41
4	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	27.8	216
5	Protein Expression of the Microglial Marker Tmem119 Decreases in Association With Morphological Changes and Location in a Mouse Model of Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2022, 16, 820127.	3.7	24
6	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
7	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	8.5	21
8	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	59
9	Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine, 2021, 66, 103339.	6.1	90
10	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature, 2021, 595, 707-712.	27.8	363
11	Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. Journal of Clinical Immunology, 2021, 41, 1425-1442.	3.8	39
12	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
13	X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	11.9	267
14	Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. Journal of Clinical Investigation, 2021, 131, .	8.2	72
15	Mannose-binding lectin promotes blood-brain barrier breakdown and exacerbates axonal damage after traumatic brain injury in mice. Experimental Neurology, 2021, 346, 113865.	4.1	3
16	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
17	Uric Acid Treatment After Stroke Prevents Long-Term Middle Cerebral Artery Remodelling and Attenuates Brain Damage in Spontaneously Hypertensive Rats. Translational Stroke Research, 2020, 11, 1332-1347.	4.2	16
18	Defining molecular identity and fates of CNS-border associated macrophages after ischemic stroke in rodents and humans. Neurobiology of Disease, 2020, 137, 104722.	4.4	50

#	Article	IF	CITATIONS
19	Dendritic Cells and Microglia Have Non-redundant Functions in the Inflamed Brain with Protective Effects of Type 1 cDCs. Cell Reports, 2020, 33, 108291.	6.4	39
20	Antigen-Dependent T Cell Response to Neural Peptides After Human Ischemic Stroke. Frontiers in Cellular Neuroscience, 2020, 14, 206.	3.7	25
21	A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	28.9	185
22	CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S98-S116.	4.3	57
23	Antibodies against neural antigens in patients with acute stroke: joint results of three independent cohort studies. Journal of Neurology, 2019, 266, 2772-2779.	3.6	9
24	Leukocytes, Collateral Circulation, and Reperfusion in Ischemic Stroke Patients Treated With Mechanical Thrombectomy. Stroke, 2019, 50, 3456-3464.	2.0	69
25	Response to letter †Why do we say "Neuroprotection―in stroke when we mean "Brain Protection or Cerebroprotection�'. European Stroke Journal, 2019, 4, 283-283.	5.5	0
26	Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation. Brain, Behavior, and Immunity, 2019, 82, 406-421.	4.1	19
27	Role of the S1P pathway and inhibition by fingolimod in preventing hemorrhagic transformation after stroke. Scientific Reports, 2019, 9, 8309.	3.3	39
28	Location of Neutrophils in Different Compartments of the Damaged Mouse Brain After Severe Ischemia/Reperfusion. Stroke, 2019, 50, 1548-1557.	2.0	61
29	Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension. Biochemical Pharmacology, 2019, 164, 115-128.	4.4	22
30	Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathologica, 2019, 137, 321-341.	7.7	177
31	CD69 Plays a Beneficial Role in Ischemic Stroke by Dampening Endothelial Activation. Circulation Research, 2019, 124, 279-291.	4.5	21
32	Advances in Stroke 2017. Stroke, 2018, 49, e174-e199.	2.0	21
33	Adrenal hormones and circulating leukocyte subtypes in stroke patients treated with reperfusion therapy. Brain, Behavior, and Immunity, 2018, 70, 346-353.	4.1	11
34	IL-23 (Interleukin-23)–Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke. Stroke, 2018, 49, 155-164.	2.0	81
35	Age-related deregulation of TDP-43 after stroke enhances NF-κB-mediated inflammation and neuronal damage. Journal of Neuroinflammation, 2018, 15, 312.	7.2	36
36	Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics, 2018, 8, 5400-5418.	10.0	48

#	Article	IF	CITATIONS
37	DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science, 2018, 362, 351-356.	12.6	73
38	Action Plan for Stroke in Europe 2018–2030. European Stroke Journal, 2018, 3, 309-336.	5.5	311
39	Role of Immune Cells Migrating to the Ischemic Brain. Stroke, 2018, 49, 2261-2267.	2.0	97
40	CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathologica Communications, 2018, 6, 76.	5.2	78
41	T Cells Prevent Hemorrhagic Transformation in Ischemic Stroke by P-Selectin Binding. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1761-1771.	2.4	38
42	Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Scientific Reports, 2017, 7, 40758.	3.3	86
43	Sphingosine-1-phosphate signalling—a key player in the pathogenesis of Angiotensin II-induced hypertension. Cardiovascular Research, 2017, 113, 123-133.	3.8	50
44	Uric acid therapy improves the outcomes of stroke patients treated with intravenous tissue plasminogen activator and mechanical thrombectomy. International Journal of Stroke, 2017, 12, 377-382.	5.9	51
45	Hsp90 inhibitor induces nuclear translocation of HSF1 predominantly in hippocampal CA1 region. Molecular Psychiatry, 2017, 22, 935-935.	7.9	0
46	Uric Acid Is Protective After Cerebral Ischemia/Reperfusion in Hyperglycemic Mice. Translational Stroke Research, 2017, 8, 294-305.	4.2	45
47	Complete reperfusion is required for maximal benefits of mechanical thrombectomy in stroke patients. Scientific Reports, 2017, 7, 11636.	3.3	44
48	The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3488-3517.	4.3	128
49	Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide. Journal of Neuroinflammation, 2017, 14, 3.	7.2	21
50	Ficolin-1 Levels in Patients Developing Vasospasm and Cerebral Ischemia After Spontaneous Subarachnoid Hemorrhage. Molecular Neurobiology, 2017, 54, 6572-6580.	4.0	14
51	Neuroanatomical correlates of stroke-associated infection and stroke-induced immunodepression. Brain, Behavior, and Immunity, 2017, 60, 142-150.	4.1	37
52	A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer's mouse model via an HSF1-mediated mechanism. Molecular Psychiatry, 2017, 22, 990-1001.	7.9	40
53	Structural and functional brain alterations in a murine model of Angiotensin <scp>II</scp> â€induced hypertension. Journal of Neurochemistry, 2017, 140, 509-521.	3.9	36
54	Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurology, The, 2016, 15, 869-881.	10.2	842

#	Article	IF	CITATIONS
55	Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia, 2016, 64, 2181-2200.	4.9	53
56	Antigen Presentation After Stroke. Neurotherapeutics, 2016, 13, 719-728.	4.4	29
57	Noninvasive Brain Imaging in Small Animal Stroke Models: MRI, PET, and SPECT. Neuromethods, 2016, , 147-186.	0.3	2
58	Selective Sphingosine 1-Phosphate Receptor 1 Agonist Is Protective Against Ischemia/Reperfusion in Mice. Stroke, 2016, 47, 3053-3056.	2.0	57
59	Uric Acid Therapy Prevents Early Ischemic Stroke Progression. Stroke, 2016, 47, 2874-2876.	2.0	62
60	Third European Stroke Science Workshop. Stroke, 2016, 47, e178-86.	2.0	0
61	Dendritic cells in brain diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 352-367.	3.8	51
62	Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain, Behavior, and Immunity, 2016, 53, 18-33.	4.1	111
63	IL-10 regulates adult neurogenesis by modulating ERK and STAT3 activity. Frontiers in Cellular Neuroscience, 2015, 9, 57.	3.7	64
64	IFN gamma regulates proliferation and neuronal differentiation by STAT1 in adult SVZ niche. Frontiers in Cellular Neuroscience, 2015, 9, 270.	3.7	32
65	Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathologica, 2015, 129, 239-257.	7.7	307
66	Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: A target of uric acid treatment. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H862-H874.	3.2	68
67	Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Science Translational Medicine, 2015, 7, 299ra121.	12.4	207
68	Multimodal Imaging Reveals Temporal and Spatial Microglia and Matrix Metalloproteinase Activity after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1711-1721.	4.3	62
69	Uric Acid Therapy Improves Clinical Outcome in Women With Acute Ischemic Stroke. Stroke, 2015, 46, 2162-2167.	2.0	103
70	Uric acid improves glucoseâ€driven oxidative stress in human ischemic stroke. Annals of Neurology, 2015, 77, 775-783.	5.3	88
71	Immunomodulatory role of IL-33 counteracts brain inflammation in stroke. Brain, Behavior, and Immunity, 2015, 50, 39-40.	4.1	4
72	Fibrinogen nitrotyrosination after ischemic stroke impairs thrombolysis and promotes neuronal death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 421-428.	3.8	24

#	Article	IF	CITATIONS
73	Blockade of MK-801-Induced Heat Shock Protein 72/73 in Rat Brain by Antipsychotic and Monoaminergic Agents Targeting D2, 5-HT _{1A} , 5-HT _{2A} and α ₁ -Adrenergic Receptors. CNS and Neurological Disorders - Drug Targets, 2014, 13, 104-111.	1.4	2
74	Antigen-specific immune reactions to ischemic stroke. Frontiers in Cellular Neuroscience, 2014, 8, 278.	3.7	54
75	Mannose-Binding Lectin Promotes Local Microvascular Thrombosis After Transient Brain Ischemia in Mice. Stroke, 2014, 45, 1453-1459.	2.0	45
76	Presence of heat shock protein 70 in secondary lymphoid tissue correlates with stroke prognosis. Journal of Neuroimmunology, 2014, 270, 67-74.	2.3	9
77	Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurology, The, 2014, 13, 453-460.	10.2	218
78	Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation. Biomedical Optics Express, 2014, 5, 457.	2.9	9
79	Infarct volume prediction using apparent diffusion coefficient maps during middle cerebral artery occlusion and soon after reperfusion in the rat. Brain Research, 2014, 1583, 169-178.	2.2	6
80	Urate and neuroprotection trials $\hat{a} \in $ Authors' reply. Lancet Neurology, The, 2014, 13, 758-759.	10.2	0
81	DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Frontiers in Aging Neuroscience, 2014, 6, 167.	3.4	24
82	Brain Tissue Hypoxia and Oxidative Stress Induced by Obstructive Apneas is Different in Young and Aged Rats. Sleep, 2014, 37, 1249-1256.	1.1	29
83	Induction of hemeoxygenase-1 expression after inhibition of hemeoxygenase activity promotes inflammation and worsens ischemic brain damage in mice. Neuroscience, 2013, 243, 22-32.	2.3	23
84	SIRT1 Regulation Modulates Stroke Outcome. Translational Stroke Research, 2013, 4, 663-671.	4.2	27
85	Hypoxia and P1 receptor activation regulate the high-affinity concentrative adenosine transporter CNT2Âin differentiated neuronal PC12 cells. Biochemical Journal, 2013, 454, 437-445.	3.7	26
86	A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector. BMC Molecular Biology, 2013, 14, 18.	3.0	8
87	IL-10 Deficiency Exacerbates the Brain Inflammatory Response to Permanent Ischemia without Preventing Resolution of the Lesion. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1955-1966.	4.3	88
88	Interleukin-10 regulates progenitor differentiation and modulates neurogenesis on adult brain. Journal of Cell Science, 2013, 126, 4208-19.	2.0	70
89	Quantitative Imaging of Microtubule Alteration as an Early Marker ofÂAxonal Degeneration after Ischemia in Neurons. Biophysical Journal, 2013, 104, 968-975.	0.5	34
90	In vivo imaging of induction of heat-shock protein-70 gene expression with fluorescence reflectance imaging and intravital confocal microscopy following brain ischaemia in reporter mice. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 426-438.	6.4	15

#	Article	IF	CITATIONS
91	A Concerted Appeal for International Cooperation in Preclinical Stroke Research. Stroke, 2013, 44, 1754-1760.	2.0	94
92	Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats. Gut, 2013, 62, 138-145.	12.1	47
93	Advances in Stroke. Stroke, 2013, 44, 318-319.	2.0	8
94	The Ins and Outs of the BCCAo Model for Chronic Hypoperfusion: A Multimodal and Longitudinal MRI Approach. PLoS ONE, 2013, 8, e74631.	2.5	45
95	Nitro-Oxidative Stress after Neuronal Ischemia Induces Protein Nitrotyrosination and Cell Death. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	36
96	Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. Development (Cambridge), 2013, 140, e2007-e2007.	2.5	1
97	Letter by Urra et al Regarding Article, "Autoimmune Responses to the Brain After Stroke Are Associated With Worse Outcome― Stroke, 2012, 43, e26; author reply e27-8.	2.0	3
98	Middle cerebral artery alterations in a rat chronic hypoperfusion model. Journal of Applied Physiology, 2012, 112, 511-518.	2.5	21
99	Brain-Derived Antigens in Lymphoid Tissue of Patients with Acute Stroke. Journal of Immunology, 2012, 188, 2156-2163.	0.8	138
100	RGD-based cell ligands for cell-targeted drug delivery act as potent trophic factors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1263-1266.	3.3	16
101	The immunology of acute stroke. Nature Reviews Neurology, 2012, 8, 401-410.	10.1	527
102	A complementary diffusion tensor imaging (DTI)-histological study in a model of Huntington's disease. Neurobiology of Aging, 2012, 33, 945-959.	3.1	29
103	Induction of COX-2 Enzyme and Down-regulation of COX-1 Expression by Lipopolysaccharide (LPS) Control Prostaglandin E2 Production in Astrocytes. Journal of Biological Chemistry, 2012, 287, 6454-6468.	3.4	166
104	Combined treatment with recombinant tissue plasminogen activator and dexamethasone phosphateâ€containing liposomes improves neurological outcome and restricts lesion progression after embolic stroke in rats. Journal of Neurochemistry, 2012, 123, 65-74.	3.9	33
105	Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogenâ€activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectinâ€1 receptors. Glia, 2012, 60, 526-540.	4.9	54
106	Anti-Obesity Sodium Tungstate Treatment Triggers Axonal and Glial Plasticity in Hypothalamic Feeding Centers. PLoS ONE, 2012, 7, e39087.	2.5	8
107	Uric Acid Levels Are Relevant in Patients With Stroke Treated With Thrombolysis. Stroke, 2011, 42, S28-32.	2.0	100
108	New Serotonin 5-HT _{1A} Receptor Agonists with Neuroprotective Effect against Ischemic Cell Damage. Journal of Medicinal Chemistry, 2011, 54, 7986-7999.	6.4	36

#	Article	IF	CITATIONS
109	Positron emission tomography with 11C-flumazenil in the rat shows preservation of binding sites during the acute phase after 2h-transient focal ischemia. Neuroscience, 2011, 182, 208-216.	2.3	21
110	Tissue Oxygenation in Brain, Muscle, and Fat in a Rat Model of Sleep Apnea: Differential Effect of Obstructive Apneas and Intermittent Hypoxia. Sleep, 2011, 34, 1127-1133.	1.1	93
111	In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson's disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6 European Journal of Neuroscience, 2011, 33, 1551-1560.	2.6	48
112	Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death and Differentiation, 2011, 18, 1617-1627.	11.2	48
113	Evaluation of Hypoxic Tissue Dynamics with 18F-FMISO PET in a Rat Model of Permanent Cerebral Ischemia. Molecular Imaging and Biology, 2011, 13, 558-564.	2.6	7
114	Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88â€dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia, 2011, 59, 242-255.	4.9	390
115	Improved Assessment of <i>Ex Vivo</i> Brainstem Neuroanatomy With Highâ€Resolution MRI and DTI at 7 Tesla. Anatomical Record, 2011, 294, 1035-1044.	1.4	36
116	Nanoparticulate architecture of protein-based artificial viruses is supported by protein–DNA interactions. Nanomedicine, 2011, 6, 1047-1061.	3.3	14
117	Advances in Translational Medicine 2010. Stroke, 2011, 42, 283-284.	2.0	8
118	Polarization second harmonic generation (PSHG) imaging of neurons: estimating the effective orientation of the SHG source in axons. Proceedings of SPIE, 2010, , .	0.8	1
119	In Vitro and In Vivo Activation of Astrocytes by Amyloid-β is Potentiated by Pro-Oxidant Agents. Journal of Alzheimer's Disease, 2010, 20, 229-245.	2.6	42
120	Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 2354-2363.	6.4	25
121	Antioxidant CR-6 Protects against Reperfusion Injury after a Transient Episode of Focal Brain Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 638-652.	4.3	39
122	Extended Ischemia Prevents HIF1α Degradation at Reoxygenation by Impairing Prolyl-hydroxylation. Journal of Biological Chemistry, 2010, 285, 18217-18224.	3.4	42
123	Assessing structural characteristics of axons in cortical neurons using polarization sensitive SHG. Proceedings of SPIE, 2010, , .	0.8	0
124	Bicosomes: Bicelles in Dilute Systems. Biophysical Journal, 2010, 99, 480-488.	0.5	25
125	Chondroitin sulfate inhibits lipopolysaccharide-induced inflammation in rat astrocytes by preventing nuclear factor kappa B activation. Neuroscience, 2010, 167, 872-879.	2.3	37
126	Matrix Metalloproteinase-9 and Cell Division in Neuroblastoma Cells and Bone Marrow Macrophages. American Journal of Pathology, 2010, 177, 2870-2885.	3.8	24

#	Article	IF	CITATIONS
127	Noninvasive Brain Imaging in Small Animal Stroke Models: MRI and PET. Neuromethods, 2010, , 139-165.	0.3	3
128	Genetically-Defined Deficiency of Mannose-Binding Lectin Is Associated with Protection after Experimental Stroke in Mice and Outcome in Human Stroke. PLoS ONE, 2010, 5, e8433.	2.5	128
129	Participation of Oxidative Stress on Rat Middle Cerebral Artery Changes Induced by Focal Cerebral Ischemia: Beneficial Effects of 3,4-Dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2 <i>H</i>)-benzopyran (CR-6). Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 429-436.	2.5	23
130	Depressed Glucose Consumption at Reperfusion following Brain Ischemia does not Correlate with Mitochondrial Dysfunction and Development of Infarction: An in vivo Positron Emission Tomography Study. Current Neurovascular Research, 2009, 6, 82-88.	1.1	23
131	Transient benefits but lack of protection by sodium pyruvate after 2-hour middle cerebral artery occlusion in the rat. Brain Research, 2009, 1272, 45-51.	2.2	9
132	Astrocytes are very sensitive to develop innate immune responses to lipid arried short interfering RNA. Glia, 2009, 57, 93-107.	4.9	38
133	Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke. Journal of Neurology, 2009, 256, 651-656.	3.6	37
134	Monocyte Subtypes Predict Clinical Course and Prognosis in Human Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 994-1002.	4.3	185
135	Regulatory T cells protect the brain after stroke. Nature Medicine, 2009, 15, 138-139.	30.7	45
136	Monocytes Are Major Players in the Prognosis and Risk of Infection After Acute Stroke. Stroke, 2009, 40, 1262-1268.	2.0	168
137	Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience, 2009, 158, 1174-1183.	2.3	189
138	Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response. Optics Express, 2009, 17, 10168.	3.4	58
139	Estimation of the effective orientation of the SHG source in primary cortical neurons. Optics Express, 2009, 17, 14418.	3.4	52
140	Glucose promotes caspaseâ€dependent delayed cell death after a transient episode of oxygen and glucose deprivation in SHâ€&Y5Y cells. Journal of Neurochemistry, 2008, 106, 1237-1247.	3.9	18
141	Endothelial Dysfunction in Rat Mesenteric Resistance Artery after Transient Middle Cerebral Artery Occlusion. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 363-369.	2.5	37
142	Improving Outcome after Stroke: Overcoming the Translational Roadblock. Cerebrovascular Diseases, 2008, 25, 268-278.	1.7	237
143	Uric acid administration in patients with acute stroke: a novel approach to neuroprotection. Expert Review of Neurotherapeutics, 2008, 8, 259-270.	2.8	59
144	Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis. Biochemical Journal, 2008, 411, 667-677.	3.7	14

Anna M Planas

#	Article	IF	CITATIONS
145	Imaging Changes in Lymphoid Organs In Vivo after Brain Ischemia with Three-Dimensional Fluorescence Molecular Tomography in Transgenic Mice Expressing Green Fluorescent Protein in T Lymphocytes. Molecular Imaging, 2008, 7, 7290.2008.00016.	1.4	33
146	Response to Letter by Emsley et al. Stroke, 2008, 39, .	2.0	0
147	Response to Letter by Dawson et al. Stroke, 2008, 39, .	2.0	0
148	A Pilot Study of Dual Treatment With Recombinant Tissue Plasminogen Activator and Uric Acid in Acute Ischemic Stroke. Stroke, 2007, 38, 2173-2175.	2.0	110
149	Infection After Acute Ischemic Stroke. Stroke, 2007, 38, 1097-1103.	2.0	350
150	Catecholamines, infection, and death in acute ischemic stroke. Journal of the Neurological Sciences, 2007, 252, 29-35.	0.6	166
151	Transient middle cerebral artery occlusion causes different structural, mechanical, and myogenic alterations in normotensive and hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H628-H635.	3.2	34
152	Exposure of glia to proâ€oxidant agents revealed selective Stat1 activation by H ₂ O ₂ and Jak2â€independent antioxidant features of the Jak2 inhibitor AG490. Glia, 2007, 55, 1313-1324.	4.9	36
153	Uric Acid Reduces Brain Damage and Improves the Benefits of rt-PA in a Rat Model of Thromboembolic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 14-20.	4.3	160
154	Imaging Brain Inflammation with [¹¹ C]PK11195 by PET and Induction of the Peripheral-Type Benzodiazepine Receptor after Transient Focal Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1975-1986.	4.3	137
155	Signalling pathways mediating inflammatory responses in brain ischaemia. Biochemical Society Transactions, 2006, 34, 1267-1270.	3.4	114
156	Response to Letter by Tsuda. Stroke, 2006, 37, 2200-2200.	2.0	0
157	Anti-VCAM-1 Antibodies did not Protect against Ischemic Damage Either in Rats Or in Mice. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 421-432.	4.3	104
158	Carboxyl-terminal fragment of amyloid precursor protein and hydrogen peroxide induce neuronal cell death through different pathways. Journal of Neural Transmission, 2006, 113, 1837-1845.	2.8	11
159	Why Does Acute Hyperglycemia Worsen the Outcome of Transient Focal Cerebral Ischemia?. Stroke, 2006, 37, 1288-1295.	2.0	76
160	Modest MRI Signal Intensity Changes Precede Delayed Cortical Necrosis After Transient Focal Ischemia in the Rat. Stroke, 2006, 37, 1525-1532.	2.0	31
161	Clinical Consequences of Infection in Patients With Acute Stroke. Stroke, 2006, 37, 461-465.	2.0	134
162	Increased Superoxide Anion Production by Interleukin-1β Impairs Nitric Oxide-Mediated Relaxation in Resistance Arteries. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 42-52.	2.5	69

#	Article	IF	CITATIONS
163	AG490 prevents cell death after exposure of rat astrocytes to hydrogen peroxide or proinflammatory cytokines: involvement of the Jak2/STAT pathway. Journal of Neurochemistry, 2005, 92, 505-518.	3.9	54
164	The –174G/C Polymorphism of the Interleukin 6 Gene Is a Hallmark of Lacunar Stroke and Not Other Ischemic Stroke Phenotypes. Cerebrovascular Diseases, 2005, 19, 91-95.	1.7	49
165	The Early Systemic Prophylaxis of Infection After Stroke Study. Stroke, 2005, 36, 1495-1500.	2.0	176
166	NMDA modulates the phosphorylation of several translation factors and inhibits protein synthesis in neural cultures. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S485-S485.	4.3	0
167	Yin and Yang of Uric Acid in Patients With Stroke. Stroke, 2004, 35, e11-2; author reply e11-2.	2.0	8
168	Activation of Matrix Metalloproteinase-3 and Agrin Cleavage in Cerebral Ischemia/Reperfusion. Journal of Neuropathology and Experimental Neurology, 2004, 63, 338-349.	1.7	102
169	Steady plasma concentration of unfractionated heparin reduces infarct volume and prevents inflammatory damage after transient focal cerebral ischemia in the rat. Journal of Neuroscience Research, 2004, 77, 565-572.	2.9	38
170	Uric acid administration for neuroprotection in patients with acute brain ischemia. Medical Hypotheses, 2004, 62, 173-176.	1.5	44
171	Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathologica, 2003, 105, 425-437.	7.7	109
172	Caspaseâ€dependent and caspaseâ€independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathology and Applied Neurobiology, 2003, 29, 472-481.	3.2	94
173	Neutrophil Infiltration Increases Matrix Metalloproteinase-9 in the Ischemic Brain after Occlusion/Reperfusion of the Middle Cerebral Artery in Rats. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1430-1440.	4.3	221
174	Transforming Growth Factor-α Attenuates N-Methyl-D-aspartic Acid Toxicity in Cortical Cultures by Preventing Protein Synthesis Inhibition through an Erk1/2-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 29552-29559.	3.4	26
175	Inhibition of tumor angiogenesis by cannabinoids. FASEB Journal, 2003, 17, 1-16.	0.5	241
176	Levels of Anti-Inflammatory Cytokines and Neurological Worsening in Acute Ischemic Stroke. Stroke, 2003, 34, 671-675.	2.0	256
177	Signaling of Cell Death and Cell Survival Following Focal Cerebral Ischemia: Life and Death Struggle in the Penumbra. Journal of Neuropathology and Experimental Neurology, 2003, 62, 329-339.	1.7	324
178	Activation of ERK and Akt Signaling in Focal Cerebral Ischemia: Modulation by TGF-α and Involvement of NMDA Receptor. Neurobiology of Disease, 2002, 11, 443-456.	4.4	40
179	Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxideâ€induced cell death. Journal of Neurochemistry, 2002, 83, 1338-1348.	3.9	81
180	Certain Forms of Matrix Metalloproteinase-9 Accumulate in the Extracellular Space after Microdialysis Probe Implantation and Middle Cerebral Artery Occlusion/Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 918-925.	4.3	24

#	Article	IF	CITATIONS
181	Expression and Activation of Matrix Metalloproteinase-2 and -9 in Rat Brain after Transient Focal Cerebral Ischemia. Neurobiology of Disease, 2001, 8, 834-846.	4.4	215
182	Focal cerebral ischemia causes two temporal waves of Akt activation. NeuroReport, 2001, 12, 3381-3384.	1.2	34
183	Temporospatial expression of HSP72 and c-JUN, and DNA fragmentation in goat hippocampus after global cerebral ischemia. Hippocampus, 2001, 11, 146-156.	1.9	9
184	Administration of Transforming Growth Factor-α Reduces Infarct Volume after Transient Focal Cerebral Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1097-1104.	4.3	61
185	Inhibitors of NO-synthase and donors of NO modulate kainic acid-induced damage in the rat hippocampus. , 2000, 59, 797-805.		12
186	Activation of the JAK/STAT pathway following transient focal cerebral ischemia: Signaling through Jak1 and Stat3 in astrocytes. , 2000, 30, 253-270.		181
187	Pancreatitis Induces HSP72 in the Lung: Role of Neutrophils and Xanthine Oxidase. Biochemical and Biophysical Research Communications, 2000, 273, 1078-1083.	2.1	10
188	Estimation of Gelatinase Content in Rat Brain: Effect of Focal Ischemia. Biochemical and Biophysical Research Communications, 2000, 278, 803-807.	2.1	36
189	MPP+ Injection into Rat Substantia Nigra Causes Secondary Glial Activation but Not Cell Death in the Ipsilateral Striatum. Neurobiology of Disease, 2000, 7, 343-361.	4.4	16
190	Transforming Growth Factor-α Acting at the Epidermal Growth Factor Receptor Reduces Infarct Volume after Permanent Middle Cerebral Artery Occlusion in Rats. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 128-132.	4.3	46
191	Induction of cyclooxygenase-2 in the rat brain after a mild episode of focal ischemia without tissue inflammation or neural cell damage. Neuroscience Letters, 1999, 275, 141-144.	2.1	38
192	Activation of nuclear factor-l [°] B in the rat brain after transient focal ischemia. Molecular Brain Research, 1999, 65, 61-69.	2.3	116
193	Epidermal growth factor receptor in proliferating reactive glia following transient focal ischemia in the rat brain. , 1998, 23, 120-129.		87
194	Methylazoxymethanol Acetate-induced Apoptosis in the External Granule Cell Layer of the Developing Cerebellum of the Rat Is Associated with Strong c-Jun Expression and Formation of High Molecular Weight c-Jun Complexes. Journal of Neuropathology and Experimental Neurology, 1997, 56, 1-9.	1.7	31
195	Stat1 in developing and adult rat brain. Induction after transient focal ischemia. NeuroReport, 1997, 8, 1359-1362.	1.2	22
196	Strong c-Jun/AP-1 immunoreactivity is restricted to apoptotic cells following intracerebral ibotenic acid injection in developing rats. Neuroscience Research, 1997, 28, 21-31.	1.9	20
197	Striatal Infarction in the Rat Causes a Transient Reduction of Tyrosine Hydroxylase Immunoreactivity in the Ipsilateral Substantia Nigra. Neurobiology of Disease, 1997, 4, 376-385.	4.4	29
198	THE HEAT SHOCK STRESS RESPONSE AFTER BRAIN LESIONS: INDUCTION OF 72 KDA HEAT SHOCK PROTEIN (CELL TYPES INVOLVED, AXONAL TRANSPORT, TRANSCRIPTIONAL REGULATION) AND PROTEIN SYNTHESIS INHIBITION. Progress in Neurobiology, 1997, 51, 607-636.	5.7	83

#	Article	IF	CITATIONS
199	Differential cellular distribution and dynamics of Hsp70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience, 1997, 80, 221-232.	2.3	81
200	Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression. Neuroscience, 1997, 80, 449-458.	2.3	36
201	Cortical infarct volume is dependent on the ischemic reduction of perifocal cerebral blood flow in a three-vessel intraluminal MCA occlusion/reperfusion model in the rat. Brain Research, 1997, 747, 273-278.	2.2	35
202	bFGF and FGFR-3 immunoreactivity in the rat brain following systemic kainic acid administration at convulsant doses: localization of bFGF and FGFR-3 in reactive astrocytes, and FGFR-3 in reactive microglia. Brain Research, 1997, 752, 315-318.	2.2	40
203	Ubiquitination of apoptotic cells in the developing cerebellum of the rat following ionizing radiation or methylazoxymethanol injection. Acta Neuropathologica, 1997, 93, 402-407.	7.7	10
204	Kainic acid?induced excitotoxicity is associated with a complex c-Fos and c-Jun response which does not preclude either cell death or survival. Journal of Neurobiology, 1997, 33, 232-246.	3.6	40
205	Stat3 Is Present in the Developing and Adult Rat Cerebellum and Participates in the Formation of Transcription Complexes Binding DNA at the sisâ€inducible Element. Journal of Neurochemistry, 1997, 68, 1345-1351.	3.9	35
206	Kainic acid—induced excitotoxicity is associated with a complex câ€Fos and câ€Jun response which does not preclude either cell death or survival. Journal of Neurobiology, 1997, 33, 232-246.	3.6	2
207	Jun expression is found in neurons located in the vicinity of subacute plaques in patients with multiple sclerosis. Neuroscience Letters, 1996, 212, 95-98.	2.1	25
208	Selective c-Jun overexpression is associated with ionizing radiation-induced apoptosis in the developing cerebellum of the rat. Molecular Brain Research, 1996, 38, 91-100.	2.3	50
209	Apoptosis and c-Jun in the thalamus of the rat following cortical infarction. NeuroReport, 1996, 7, 425-428.	1.2	56
210	CREB-1 and CREB-2 immunoreactivity in the rat brain. Brain Research, 1996, 712, 159-164.	2.2	16
211	Amyloid deposition is associated with c-Jun expression in Alzheimer's disease and amyloid angiopathy. Neuropathology and Applied Neurobiology, 1996, 22, 521-526.	3.2	20
212	Naturally Occurring (Programmed) and Radiationâ€induced Apoptosis are Associated with Selective câ€Jun Expression in the Developing Rat Brain. European Journal of Neuroscience, 1996, 8, 1286-1298.	2.6	77
213	Induction of Stat3, a Signal Transducer and Transcription Factor, in Reactive Microglia following Transient Focal Cerebral Ischaemia. European Journal of Neuroscience, 1996, 8, 2612-2618.	2.6	100
214	A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Human Molecular Genetics, 1996, 5, 1305-1310.	2.9	197
215	Kainic Acid-induced Heat Shock Protein-70, mRNA and Protein Expression is Inhibited by MK-801 in Certain Rat Brain Regions. European Journal of Neuroscience, 1995, 7, 293-304.	2.6	55
216	Expression of c-fos and inducible hsp-70 mRNA following a transient episode of focal ischemia that had non-lethal effects on the rat brain. Brain Research, 1995, 670, 317-320.	2.2	36

#	Article	IF	CITATIONS
217	Survival of parvalbumin-immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction. Brain Research, 1995, 692, 41-46.	2.2	25
218	NMDA receptors mediate heat shock protein induction in the mouse brain following administration of the ibotenic acid analogue AMAA. Brain Research, 1995, 700, 289-294.	2.2	10
219	A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Human Molecular Genetics, 1995, 4, 1935-1944.	2.9	250
220	Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neuroscience Letters, 1995, 200, 187-190.	2.1	119
221	Ionizing radiation-induced apoptosis is associated with c-Jun expression and c-Jun/AP-1 activation in the developing cerebellum of the rat. Neuroscience Letters, 1995, 202, 105-108.	2.1	30
222	Evidence of internucleosomal DNA fragmentation and identification of dying cells in X-ray-induced cell death in the developing brain. International Journal of Developmental Neuroscience, 1995, 13, 21-28.	1.6	32
223	Induction of heat-shock protein-70 messenger RNA and protein following systemic kainate injection in the rat: Evidence of protein axonal transport. Neuroscience, 1995, 69, 1111-1118.	2.3	11
224	Transforming growth factor-α immunoreactivity in the developing and adult brain. Neuroscience, 1995, 66, 189-199.	2.3	73
225	Regional expression of inducible heat shock protein-70 mRNA in the rat brain following administration of convulsant drugs. Molecular Brain Research, 1994, 27, 127-137.	2.3	44
226	Rat Brain Acetylcholinesterase Visualized with [11C]Physostigmine. NeuroImage, 1994, 1, 173-180.	4.2	27
227	Induction of HSP70 mRNA and HSP70 protein in the hippocampus of the developing gerbil following transient forebrain ischemia. Brain Research, 1994, 653, 191-198.	2.2	20
228	Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis-associated internucleosomal DNA fragmentation. Neuroscience Letters, 1994, 182, 77-79.	2.1	84
229	Early 72-kDa heat shock protein induction in microglial cells following focal ischemia in the rat brain. Neuroscience Letters, 1994, 182, 205-207.	2.1	38
230	Increased expression of bcl-2 immunoreactivity in the developing cerebral cortex of the rat. Neuroscience Letters, 1994, 179, 13-16.	2.1	51
231	Kainic acid inhibits protein amino acid incorporation in select rat brain regions. NeuroReport, 1994, 5, 2333-2336.	1.2	7
232	In vivo visualization of acetylcholinesterase with positron emission tomography. NeuroReport, 1993, 4, 535-538.	1.2	40
233	Regional Cerebral I-[14C-Methyl]Methionine Incorporation into Proteins: Evidence for Methionine Recycling in the Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 603-612.	4.3	22
234	Study of regional cerebral blood flow after lindane administration to the rat. Pesticide Biochemistry and Physiology, 1990, 38, 1-8.	3.6	4

#	Article	IF	CITATIONS
235	Uncoupling of Cerebral Glucose Supply and Utilization After Hexane-2,5-Dione Intoxication in the Rat. Journal of Neurochemistry, 1987, 48, 816-823.	3.9	13
236	Studies on the Relationship between Cerebral Glucose Transport and Phosphorylation Using 2-Deoxyglucose. Journal of Cerebral Blood Flow and Metabolism, 1986, 6, 708-716.	4.3	51