Brijnandan S Dehiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5337351/publications.pdf

Version: 2024-02-01

840776 752698 31 445 11 20 citations h-index g-index papers 31 31 31 530 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. International Nano Letters, 2017, 7, 285-290.	5.0	52
2	Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles. Materials Chemistry and Physics, 2018, 218, 70-76.	4.0	50
3	Role of non-functionalized oxide nanoparticles on mechanical properties and toughening mechanisms of epoxy nanocomposites. Ceramics International, 2021, 47, 22316-22344.	4.8	45
4	Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. International Journal of Biological Macromolecules, 2020, 149, 1-10.	7.5	36
5	Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials, 2020, 10, 2019.	4.1	34
6	VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications. Ceramics International, 2020, 46, 986-995.	4.8	31
7	Synthesis and characterization of nHA-PEG and nBG-PEG scaffolds for hard tissue engineering applications. Ceramics International, 2019, 45, 8370-8379.	4.8	28
8	Influence of anionic and non-ionic surfactants on the synthesis of core-shell Fe3O4@TiO2 nanocomposite synthesized by hydrothermal method. Ceramics International, 2020, 46, 23516-23525.	4.8	19
9	Fabrication and characterization of silver nanorods incorporated calcium silicate scaffold using polymeric sponge replica technique. Materials and Design, 2020, 195, 109026.	7.0	18
10	Phase modulation in nanocrystalline vanadium di-oxide (VO2) nanostructures using citric acid via one pot hydrothermal method. Ceramics International, 2019, 45, 18452-18461.	4.8	17
11	Effects of severe plastic deformation by ECAP on the microstructure and mechanical properties of a commercial copper alloy. Materials Research Express, 2019, 6, 116570.	1.6	15
12	Microstructure And Photo-catalytic Dye Degradation Of Silver- Silica Nano Composites Synthesised By Sol-gel Method. Advanced Materials Letters, 2013, 4, 317-322.	0.6	15
13	Removal of Cr (VI) from aqueous solution using VO2(B) nanoparticles. Chemical Physics Letters, 2020, 739, 136934.	2.6	11
14	Ibuprofen-Loaded CTS/nHA/nBC Scaffolds for the Applications of Hard Tissue Engineering. Iranian Biomedical Journal, 2019, 23, 190-199.	0.7	10
15	Fast removal of heavy metals from water and soil samples using magnetic Fe3O4 nanoparticles. Environmental Science and Pollution Research, 2021, 28, 3942-3952.	5.3	9
16	Magnetic and optical properties of green synthesized nickel ferrite nanoparticles and its application into photocatalysis. Nanotechnology, 2021, 32, 505725.	2.6	9
17	Development and properties study of microstructure silver-doped silica nanocomposites by chemical process. Journal of Alloys and Compounds, 2014, 583, 550-553.	5.5	8
18	Evaluating the influence of various routes on micro-structure and mechanical properties of AA-6063 after equal channel angular pressing. Materials Research Express, 2019, 6, 0865f9.	1.6	5

#	Article	IF	CITATIONS
19	Synthesis and electrochemical properties of Ge4+ ions-modified VO2(paramontroseite). Journal of Materials Science: Materials in Electronics, 2020, 31, 3795-3802.	2.2	5
20	A Statistical Method to Predict the Hardness and Grain Size After Equal Channel Angular Pressing of AA-6063 with Intermediate Annealing. Arabian Journal for Science and Engineering, 2021, 46, 2055-2070.	3.0	5
21	Polyethylene Glycol (PEG) Modified Porous Ca5(PO4)2SiO4 Bioceramics: Structural, Morphologic and Bioactivity Analysis. Coatings, 2020, 10, 538.	2.6	4
22	Magnetic coreâ€shell Fe ₃ O ₄ @TiO ₂ nanocomposites for broad spectrum antibacterial applications. IET Nanobiotechnology, 2021, 15, 301-308.	3.8	3
23	Synthesis and Characterization of Nano Bioglass for the Application of Bone Tissue Engineering. Journal of Nanoscience and Technology, 2018, 4, 471-474.	0.3	3
24	Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering. Iranian Biomedical Journal, 2019, 23, 190-9.	0.7	3
25	Effect of surfactant on hydrothermal synthesis of VO2 (B) nanostructures for energy saving applications. AIP Conference Proceedings, 2019, , .	0.4	2
26	Study of phase changes induced by gamma irradiation in welded stainless steel alloys 304 and 316. Materials Today: Proceedings, 2021, 47, 6545-6545.	1.8	2
27	Magnetically recyclable copper doped core-shell Fe ₃ 0 ₄ @TiO ₂ @Cu nanocomposites for wastewater remediation. Environmental Technology (United Kingdom), 2022, 43, 4484-4492.	2.2	2
28	Micro-Plasma Assisted Synthesis of ZnO Nanosheets for the Efficient Removal of Cr6+ from the Aqueous Solution. Crystals, 2021, 11, 2.	2.2	2
29	Hydrothermal synthesis, spectroscopic, optical and electrochemical characterization of vanadium dioxide nanostructures. AIP Conference Proceedings, 2019, , .	0.4	1
30	Green synthesis of silver nanoparticles using Grevillea robusta. AIP Conference Proceedings, 2019, , .	0.4	1
31	Silver-doped strontium calcium silicate microspheres: Structural and antibacterial studies. AIP Conference Proceedings, 2019, , .	0.4	0