
Oleg Sazhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5337301/publications.pdf Version: 2024-02-01

OLEC SAZHIN

#	Article	IF	CITATIONS
1	Gas outflow into vacuum over a forward- and backward-facing step in a wide range of rarefaction. International Journal of Heat and Mass Transfer, 2021, 179, 121666.	4.8	5
2	Loop Heat Pipes with a Steam Jet Pump. Journal of Engineering Physics and Thermophysics, 2020, 93, 700-709.	0.6	0
3	Rarefied gas flow into vacuum through a channel with sudden contraction or expansion. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	6
4	Rarefied gas flow through a rough channel into a vacuum. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	6
5	The impact of surface roughness on free molecular gas flow in 3-D rectangular channel. AIP Conference Proceedings, 2019, , .	0.4	1
6	The effect of surface roughness on internal free molecular gas flow. Vacuum, 2019, 159, 287-292.	3.5	7
7	Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid. International Journal of Heat and Mass Transfer, 2019, 132, 557-564.	4.8	39
8	Regarding a Benchmark Problem: Rarefied Gas Flow Through a Rough-Surfaced Channel. Computational Mathematics and Mathematical Physics, 2018, 58, 1640-1646.	0.8	3
9	The first ammonia loop heat pipe: Long-life operation test. International Journal of Heat and Mass Transfer, 2017, 115, 1085-1091.	4.8	7
10	An experimental study of loop heat pipes with steam jet pump. International Journal of Heat and Mass Transfer, 2017, 115, 137-142.	4.8	11
11	Two-phase nanofluid-based thermal management systems for LED cooling. IOP Conference Series: Materials Science and Engineering, 2017, 192, 012020.	0.6	7
12	Liquid Flow Meter based on a Thermal Anemometer Microsensor. Journal of Applied Fluid Mechanics, 2016, 9, 1991-1996.	0.2	6
13	Comment on "Data on Internal Rarefied Gas Flows―[J. Phys. Chem. Ref. Data 27, 657 (1998)]. Journal of Physical and Chemical Reference Data, 2015, 44, 036101.	4.2	4
14	Rarefied gas flow through a slit and channel of finite length due to a large pressure difference. A benchmark problem. Vacuum, 2015, 115, 75-79.	3.5	8
15	Gas flow meter based on calorimetric flow microsensor. , 2014, , .		0
16	Novel mass air flow meter for automobile industry based on thermal flow microsensor. II. Flow meter, test procedures and results. Flow Measurement and Instrumentation, 2014, 35, 48-54.	2.0	9
17	Novel mass air flow meter for automobile industry based on thermal flow microsensor. I. Analytical model and microsensor. Flow Measurement and Instrumentation, 2013, 30, 60-65.	2.0	21
18	Flow Microsensor of Thermal Type for Measurements of Gas Fluxes. Applied Mechanics and Materials, 2012, 249-250, 118-125.	0.2	0

Oleg Sazhin

#	Article	IF	CITATIONS
19	Pressure-driven flow of rarefied gas through a slit at a various pressure ratios. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	8
20	Prototype of calorimetric flow microsensor. , 2012, , .		1
21	Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum. , 2011, , .		Ο
22	Impact of the gas-surface scattering and gas molecule-molecule interaction on the mass flow rate of the rarefied gas through a short channel into a vacuum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1393-1398.	2.1	14
23	Cas molecule-molecule interaction and the gas-surface scattering effect on the rarefied gas flow through a slit into a vacuum. Journal of Experimental and Theoretical Physics, 2009, 108, 874-879.	0.9	14
24	Rarefied gas flow through a channel of finite length into a vacuum. Journal of Experimental and Theoretical Physics, 2009, 109, 700-706.	0.9	17
25	Cas flow through a slit into a vacuum in a wide range of rarefaction. Journal of Experimental and Theoretical Physics, 2008, 107, 162-169.	0.9	18
26	DSMC-computation of the Rarefied Gas Flow through a Slit into a Vacuum. , 2008, , .		6
27	Rarefied gas flow through short tubes into vacuum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 228-238.	2.1	94
28	Numerical analysis of gas–surface scattering effect on thermal transpiration in the free molecular regime. Vacuum, 2007, 82, 20-29.	3.5	22
29	Investigation of heat and mass transfer in a rarefied gas using high-frequency measurement techniques. Measurement Techniques, 2006, 49, 276-285.	0.6	3
30	The Monte Carlo and Molecular Dynamics Simulation of Gas-Surface Interaction. Lecture Notes in Computer Science, 2005, , 143-146.	1.3	0
31	Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2499-2503.	2.1	68