
Carsten Schwandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5336626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile Electrochemical Preparation of Nano-sized Ultra-high-temperature Ta _{1â^x} Hf _x C Ceramic Powders. Journal of the Electrochemical Society, 2022, 169, 062506.	2.9	4
2	Factors Controlling the Synthesis of Porous Ti-Based Biomedical Alloys by Electrochemical Deoxidation in Molten Salts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1590-1602.	2.1	0
3	Comment on the Article "Initial Reactions at the Electrodes of the FFC-Cambridge Process in Molten CaCl2 to Produce Ti―by P.S. Lai, M.L. Hu, Z.F. Qu, L.Z. Gao, C.G. Bai, T.X. Wang, S.F. Zhang, and G.B. Qiu. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 407-411.	2.1	0
4	Solid state electrochemically synthesised \hat{l}^2 -SiC nanowires as the anode material in lithium ion batteries. Energy Storage Materials, 2020, 26, 234-241.	18.0	32
5	Preparation of Refractory High-Entropy Alloys by Electro-Deoxidation and the Effect of Heat Treatment on Microstructure and Hardness. Jom, 2020, 72, 3895-3905.	1.9	11
6	Comment on the Article "Reduction of Carbon Dioxide to Carbon Nanostructures in Molten Salt: The Effect of Electrolyte Composition―by S. Abbasloo, M. Ojaghi-Ilkhchi, and M. Mozammel. Jom, 2020, 72, 4718-4720.	1.9	0
7	Facile and Scalable Electrochemical Synthesis of Ta-Nb Alloy Powders for Capacitors. Journal of the Electrochemical Society, 2020, 167, 022504.	2.9	4
8	Facile Electrochemical Synthesis of Nanoscale (TiNbTaZrHf)C Highâ€Entropy Carbide Powder. Angewandte Chemie, 2020, 132, 11928-11933.	2.0	15
9	Facile Electrochemical Synthesis of Nanoscale (TiNbTaZrHf)C Highâ€Entropy Carbide Powder. Angewandte Chemie - International Edition, 2020, 59, 11830-11835.	13.8	46
10	Molten Salt Electrochemical Synthesis, Heat Treatment and Microhardness of Ti–5Ta–2Nb Alloy. Materials Transactions, 2019, 60, 391-399.	1.2	9
11	Phase Composition, Microstructure, Corrosion Resistance and Mechanical Properties of Molten Salt Electrochemically Synthesised Ti–Nb–Sn Biomedical Alloys. Materials Transactions, 2019, 60, 422-428.	1.2	8
12	Electrochemical synthesis of porous Ti-Nb alloys for biomedical applications. Materials Science and Engineering C, 2019, 96, 466-478.	7.3	42
13	Electrochemical conversion of oxide spinels into high-entropy alloy. Journal of Alloys and Compounds, 2019, 776, 133-141.	5.5	29
14	Comment on the article "New solid-state electrochemical method of measuring dissolved hydrogen in Al melt―by S.G. Kim, B.H. Jung, C.O. Park, R.A. Rapp. Sensors and Actuators B: Chemical, 2018, 255, 2066-2068.	7.8	0
15	Direct Electrochemical Preparation of Nanostructured Silicon Carbide and Its Nitridation Behavior. Journal of the Electrochemical Society, 2018, 165, D731-D742.	2.9	8
16	On the nature of the current and the absence of an IR-drop in an FFC-Cambridge-type electro-deoxidation cell. Electrochimica Acta, 2018, 280, 114-120.	5.2	12
17	Comment on the article "Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2–NaCl molten salt―by L. Xiong, Y.X. Hua, C.Y. Xu, J. Li, Y. Li, Q.B. Zhang, Z.R. Zhou, Y.D. Zhang, J.J. Ru. Journal of Alloys and Compounds, 2017, 710, 692-694.	5.5	4
18	Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery. Metallurgical and Materials Transactions E, 2017, 4, 22-28.	0.5	0

CARSTEN SCHWANDT

#	Article	IF	CITATIONS
19	Direct electrochemical synthesis of high-entropy alloys from metal oxides. Applied Materials Today, 2017, 9, 111-121.	4.3	47
20	Aspects of the Application of Electrochemistry to the Extraction of Titanium and Its Applications. Materials Transactions, 2017, 58, 306-312.	1.2	43
21	Laser welding studies on Ti-6Al-4V in air in conjunction with cathodic protection. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 689-696.	2.5	3
22	Amine Functionalized polyaniline grafted to exfoliated graphite oxide: Synthesis, characterization and multi-element sensor studies. Journal of Electroanalytical Chemistry, 2015, 757, 137-143.	3.8	6
23	Preparation of tin-filled carbon nanotubes and nanoparticles by molten salt electrolysis. Carbon, 2014, 70, 142-148.	10.3	19
24	Iminodiacetic acid functionalized polypyrrole modified electrode as Pb(II) sensor: Synthesis and DPASV studies. Electrochimica Acta, 2014, 137, 557-563.	5.2	20
25	Use of Molten Salt Fluxes and Cathodic Protection for Preventing the Oxidation of Titanium at Elevated Temperatures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 2145-2152.	2.1	13
26	Solid state electrochemical hydrogen sensor for aluminium and aluminium alloy melts. Sensors and Actuators B: Chemical, 2013, 187, 227-233.	7.8	12
27	Understanding the electro-deoxidation of titanium dioxide to titanium metal via the FFC-Cambridge process. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2013, 122, 213-218.	0.6	17
28	The production of oxygen and metal from lunar regolith. Planetary and Space Science, 2012, 74, 49-56.	1.7	103
29	On the oxidation of electrolytic carbon nanomaterials. Corrosion Science, 2012, 54, 307-313.	6.6	34
30	Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corrosion Science, 2012, 64, 90-97.	6.6	39
31	High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis. Carbon, 2012, 50, 1311-1315.	10.3	43
32	Oxygen from Lunar Regolith. , 2012, , 165-187.		4
33	Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Materials Characterization, 2011, 62, 987-994.	4.4	49
34	Thermokinetic characteristics of lithium chloride. Journal of Thermal Analysis and Calorimetry, 2011, 104, 619-626.	3.6	53
35	The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 655-670.	1.5	46
36	An Investigation of Current Reversal Mode for Gas Sensing With a Solid Electroyte. International Journal of Applied Ceramic Technology, 2006, 3, 200-209.	2.1	2

#	Article	IF	CITATIONS
37	Electrochemical investigation of lithium and tin reduction at a graphite cathode in molten chlorides. Journal of Electroanalytical Chemistry, 2004, 562, 15-21.	3.8	31
38	Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride. Journal of Electroanalytical Chemistry, 2002, 530, 16-22.	3.8	51
39	Preparation of Ta-Nb Alloy Powder by Electro-deoxidation of Ta ₂ O ₅ /Nb ₂ O ₅ Mixture in a CaCl ₂ -NaCl Eutectic Melt. Advanced Materials Research, 0, 160-162, 1131-1135.	0.3	6
40	The FFC-Cambridge Process for Titanium Metal Winning. Key Engineering Materials, 0, 436, 13-25.	0.4	64
41	Polyanthranilic acid microspheres as an active material for electrochemical detection of sub-picomolar lead ion concentrations in aqueous media. Ionics, 0, , .	2.4	Ο