
Gustav Oberdorfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5336514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High thermodynamic stability of parametrically designed helical bundles. Science, 2014, 346, 481-485.	6.0	264
2	De novo design of protein homo-oligomers with modular hydrogen-bond network–mediated specificity. Science, 2016, 352, 680-687.	6.0	262
3	Improved molecular replacement by density- and energy-guided protein structure optimization. Nature, 2011, 473, 540-543.	13.7	226
4	Asymmetric Bioreduction of CC Bonds using Enoate Reductases OPR1, OPR3 and YqjM: Enzymeâ€Based Stereocontrol. Advanced Synthesis and Catalysis, 2008, 350, 411-418.	2.1	178
5	Fusion of Binding Domains to Thermobifida cellulosilytica Cutinase to Tune Sorption Characteristics and Enhancing PET Hydrolysis. Biomacromolecules, 2013, 14, 1769-1776.	2.6	137
6	Principles for designing proteins with cavities formed by curved Î ² sheets. Science, 2017, 355, 201-206.	6.0	117
7	De novo design of self-assembling helical protein filaments. Science, 2018, 362, 705-709.	6.0	112
8	De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural and Molecular Biology, 2018, 25, 1028-1034.	3.6	101
9	Engineering V-Type Nerve Agents Detoxifying Enzymes Using Computationally Focused Libraries. ACS Chemical Biology, 2013, 8, 2394-2403.	1.6	91
10	Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15012-15017.	3.3	41
11	An Algorithm for the Deconvolution of Mass Spectrosopic Patterns in Isotope Labeling Studies. Evaluation for the Hydrogenâ^'Deuterium Exchange Reaction in Ketones. Journal of Organic Chemistry, 2007, 72, 5778-5783.	1.7	40
12	Vascular Bioactivation of Nitroglycerin by Aldehyde Dehydrogenase-2. Journal of Biological Chemistry, 2012, 287, 38124-38134.	1.6	33
13	Stereopreferences of Old Yellow Enzymes: Structure Correlations and Sequence Patterns in Enoate Reductases. ChemCatChem, 2011, 3, 1562-1566.	1.8	32
14	Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae. PLoS ONE, 2016, 11, e0156892.	1.1	30
15	Stereocomplementary Asymmetric Reduction of Bulky–Bulky Ketones by Biocatalytic Hydrogen Transfer. European Journal of Organic Chemistry, 2008, 2008, 2539-2543.	1.2	25
16	Stereocontrol Strategies in the Asymmetric Bioreduction of Alkenes. Synlett, 2012, 23, 1857-1864.	1.0	23
17	Characterization of the PLPâ€dependent aminotransferase NikK from <i>Streptomycesâ€ftendae</i> and its putative role in nikkomycin biosynthesis. FEBS Journal, 2011, 278, 4122-4135.	2.2	19
18	Epoxideâ€Hydrolaseâ€Initiated Hydrolysis/Rearrangement Cascade of a Methyleneâ€Interrupted Bisâ€Epoxide Yields Chiral THF Moieties without Involvement of a "Cyclase― ChemBioChem, 2009, 10, 1697-1704.	1.3	18

GUSTAV OBERDORFER

#	Article	IF	CITATIONS
19	De novo design of a homo-trimeric amantadine-binding protein. ELife, 2019, 8, .	2.8	18
20	The Crystal Structure of D-Threonine Aldolase from Alcaligenes xylosoxidans Provides Insight into a Metal Ion Assisted PLP-Dependent Mechanism. PLoS ONE, 2015, 10, e0124056.	1.1	16
21	Structural and Functional Characterization of NikO, an Enolpyruvyl Transferase Essential in Nikkomycin Biosynthesis. Journal of Biological Chemistry, 2012, 287, 31427-31436.	1.6	14
22	The Structure of Glycerol Trinitrate Reductase NerA from <i>Agrobacterium radiobacter</i> Reveals the Molecular Reason for Nitro―and Eneâ€Reductase Activity in OYE Homologues. ChemBioChem, 2013, 14, 836-845.	1.3	10
23	Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. ACS Catalysis, 2022, 12, 3357-3370.	5.5	5
24	A Novel High-Throughput Nanopore-Sequencing-Based Strategy for Rapid and Automated S-Protein Typing of SARS-CoV-2 Variants. Viruses, 2021, 13, 2548.	1.5	5
25	Computational backbone design enables soluble engineering of transferrin receptor apical domain. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1569-1577.	1.5	4
26	A local platform for user-friendly FAIR data management and reproducible analytics. Journal of Biotechnology, 2021, 341, 43-50.	1.9	4
27	Derivatives of Natural Organocatalytic Cofactors and Artificial Organocatalytic Cofactors as Catalysts in Enzymes. ChemBioChem, 2022, 23, .	1.3	3