Simon Dadson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5336309/publications.pdf

Version: 2024-02-01

109137 82410 5,521 74 35 h-index citations g-index papers

86 86 86 6623 times ranked docs citations citing authors all docs

72

#	Article	IF	CITATIONS
1	Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Communications Earth & Environment, 2022, 3, .	2.6	13
2	Deep Learning for Vegetation Health Forecasting: A Case Study in Kenya. Remote Sensing, 2022, 14, 698.	1.8	11
3	Geomorphology and Earth system science. Geological Society Memoir, 2022, 58, 99-108.	0.9	3
4	Statistical Attribution of the Influence of Urban and Tree Cover Change on Streamflow: A Comparison of Large Sample Statistical Approaches. Water Resources Research, 2022, 58, .	1.7	7
5	Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations. Hydrology and Earth System Sciences, 2022, 26, 3151-3175.	1.9	3
6	A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 2021, 252, 112162.	4.6	138
7	Impact of dams and climate change on suspended sediment flux to the Mekong delta. Science of the Total Environment, 2021, 755, 142468.	3.9	54
8	Contrasting controls on Congo Basin evaporation at the two rainfall peaks. Climate Dynamics, 2021, 56, 1609-1624.	1.7	25
9	Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data. Hydrology and Earth System Sciences, 2021, 25, 1617-1641.	1.9	23
10	Advances in Land Surface Modelling. Current Climate Change Reports, 2021, 7, 45-71.	2.8	43
11	Knowledge gaps in our perceptual model of Great Britain's hydrology. Hydrological Processes, 2021, 35, e14288.	1.1	22
12	Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. Hydrology and Earth System Sciences, 2021, 25, 3897-3935.	1.9	109
13	Increased water risks to global hydropower in 1.5°C and 2.0°C Warmer Worlds. Journal of Hydrology, 2021, 599, 126503.	2.3	21
14	Estimation and evaluation of high-resolution soil moisture from merged model and Earth observation data in the Great Britain. Remote Sensing of Environment, 2021, 264, 112610.	4.6	30
15	Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences, 2021, 25, 5517-5534.	1.9	69
16	A regional coupled approach to water cycle prediction during winter 2013/14 in the United Kingdom. Hydrological Processes, 2021, 35, e14438.	1.1	3
17	Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework. Journal of Hydrology, 2020, 580, 124245.	2.3	4
18	Developing observational methods to drive future hydrological science: Can we make a start as a community?. Hydrological Processes, 2020, 34, 868-873.	1.1	34

#	Article	IF	CITATIONS
19	The impact of stormâ€triggered landslides on sediment dynamics and catchmentâ€wide denudation rates in the southern Central Range of Taiwan following the extreme rainfall event of Typhoon Morakot. Earth Surface Processes and Landforms, 2020, 45, 548-564.	1.2	14
20	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	1.7	86
21	Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 2020, 10, 54-57.	8.1	132
22	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	3.6	98
23	Evaluation of Evaporation Climatology for the Congo Basin Wet Seasons in 11 Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030619.	1.2	13
24	A pan-African high-resolution drought index dataset. Earth System Science Data, 2020, 12, 753-769.	3.7	61
25	Understanding the effectiveness of investments in irrigation system modernization: evidence from Madhya Pradesh, India. International Journal of Water Resources Development, 2019, 35, 847-870.	1.2	5
26	Can We Use Satellite-Based FAPAR to Detect Drought?. Sensors, 2019, 19, 3662.	2.1	14
27	Streamflow response to climate change in the Greater Horn of Africa. Climatic Change, 2019, 156, 341-363.	1.7	24
28	The impact of the Madden-Julian Oscillation on hydrological extremes. Journal of Hydrology, 2019, 571, 142-149.	2.3	21
29	Increasing risks of multiple breadbasket failure under 1.5 and 2†°C global warming. Agricultural Systems, 2019, 175, 34-45.	3.2	64
30	The Impact of Humanâ€Induced Climate Change on Regional Drought in the Horn of Africa. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4549-4566.	1.2	23
31	Analysis of the relationship between rainfall and economic growth in Indian states. Global Environmental Change, 2018, 49, 56-72.	3.6	17
32	Global implications of 1.5 ${\rm \hat{A}}$ °C and 2 ${\rm \hat{A}}$ °C warmer worlds on extreme river flows. Environmental Research Letters, 2018, 13, 094003.	2,2	31
33	Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data. Journal of Hydrology, 2018, 566, 595-606.	2.3	90
34	Exploring Cooperative Transboundary River Management Strategies for the Eastern Nile Basin. Water Resources Research, 2018, 54, 9224-9254.	1.7	56
35	Finding sustainable water futures in data-sparse regions under climate change: Insights from the Turkwel River basin, Kenya. Journal of Hydrology: Regional Studies, 2018, 19, 124-135.	1.0	18
36	A large set of potential past, present and future hydro-meteorological time series for the UK. Hydrology and Earth System Sciences, 2018, 22, 611-634.	1.9	54

#	Article	IF	Citations
37	The UKC2 regional coupled environmental prediction system. Geoscientific Model Development, 2018, 11, 1-42.	1.3	45
38	Mesoscale rainfall patterns observed around wetlands in subâ€Saharan Africa. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 2118-2132.	1.0	17
39	Longâ€Term Changes in Global Socioeconomic Benefits of Flood Defenses and Residual Risk Based on CMIP5 Climate Models. Earth's Future, 2018, 6, 938-954.	2.4	22
40	Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the Assessment of Global and Regional Risk Pools. Risk Analysis, 2017, 37, 2212-2228.	1.5	34
41	Dynamic response of land use and river nutrient concentration to long-term climatic changes. Science of the Total Environment, 2017, 590-591, 818-831.	3.9	40
42	A restatement of the natural science evidence concerning catchment-based †natural†follow flood management in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160706.	1.0	184
43	Global Floods and Water Availability Driven by Atmospheric Rivers. Geophysical Research Letters, 2017, 44, 10,387.	1.5	102
44	Water security, risk, and economic growth: Insights from a dynamical systems model. Water Resources Research, 2017, 53, 6425-6438.	1.7	59
45	Seasonal and Interannual Changes in Sediment Transport Identified through Sediment Rating Curves. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	35
46	Integrated modeling in urban hydrology: reviewing the role of monitoring technology in overcoming the issue of †big data†requirements. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1177.	2.8	16
47	Cooperative filling approaches for the Grand Ethiopian Renaissance Dam. Water International, 2016, 41, 611-634.	0.4	127
48	Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). Journal of Hydrology, 2016, 542, 357-372.	2.3	103
49	Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of the Total Environment, 2016, 572, 1507-1519.	3.9	76
50	The 2014 Drought in the Horn of Africa: Attribution of Meteorological Drivers. Bulletin of the American Meteorological Society, 2015, 96, S83-S88.	1.7	21
51	The role of storage capacity in coping with intra- and inter-annual water variability in large river basins. Environmental Research Letters, 2015, 10, 125001.	2.2	34
52	High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrology and Earth System Sciences, 2015, 19, 91-104.	1.9	85
53	Dynamic modelling of multiple phytoplankton groups in rivers with an application to the Thames river system in the UK. Environmental Modelling and Software, 2015, 74, 75-91.	1.9	35
54	The 2014 Drought in the Horn of Africa: Attribution of Meteorological Drivers. Bulletin of the American Meteorological Society, 2015, 96, S83-S88.	1.7	1

#	Article	IF	Citations
55	Coping with the curse of freshwater variability. Science, 2014, 346, 429-430.	6.0	155
56	Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. International Journal of Climatology, 2013, 33, 1367-1381.	1.5	349
57	Water security, global change and land–atmosphere feedbacks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120412.	1.6	20
58	Preface. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130262.	1.6	1
59	The drying up of Britain? A national estimate of changes in seasonal river flows from 11 Regional Climate Model simulations. Hydrological Processes, 2012, 26, 1115-1118.	1.1	68
60	Future Flows Climate: an ensemble of 1-km climate change projections for hydrological application in Great Britain. Earth System Science Data, 2012, 4, 143-148.	3.7	29
61	Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters, 2011, 304, 347-355.	1.8	341
62	Evaluation of a grid-based river flow model configured for use in a regional climate model. Journal of Hydrology, 2011, 411, 238-250.	2.3	27
63	The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology, 2010, 57, 1126-1146.	1.6	236
64	Evaluation of snow cover and depth simulated by a land surface model using detailed regional snow observations from Austria. Journal of Geophysical Research, 2010, 115, .	3.3	19
65	Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. Journal of Geophysical Research, 2010, 115, .	3.3	56
66	Landscape and landscape-scale processes as the unfilled niche in the global environmental change debate: an introduction. , 2009 , , $1-36$.		14
67	Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surface Processes and Landforms, 2008, 33, 1354-1373.	1.2	125
68	Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology, 2006, 77, 112-125.	1.1	116
69	Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surface Processes and Landforms, 2005, 30, 1387-1403.	1.2	81
70	Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	100
71	Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 2004, 32, 733.	2.0	471
72	Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 2003, 426, 648-651.	13.7	787

SIMON DADSON

#	Article	IF	CITATIONS
73	Green infrastructure and climate change impacts on the flows and water quality of urban catchments: Salmons Brook and Pymmes Brook in north-east London. Hydrology Research, 0, , .	1.1	2
74	Does subjective wellâ€being matter when assessing the impacts of irrigation infrastructure? Empirical evidence from Madhya Pradesh, India. Irrigation and Drainage, 0, , .	0.8	1