Peter Steier

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5336205/peter-steier-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

181 62 4,907 35 h-index g-index citations papers 190 5,701 5.1 5.24 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
181	Deciphering anthropogenic uranium sources in the equatorial northwest Pacific margin. <i>Science of the Total Environment</i> , 2022 , 806, 150482	10.2	О
180	Late Pleistocene glacial advances, equilibrium-line altitude changes and paleoclimate in the Jakupica Mts (North Macedonia). <i>Catena</i> , 2022 , 216, 106383	5.8	O
179	A record of 241Am, 236U, 238U, 239Pu, 240Pu, 134Cs and 137Cs in surface seawater and 241Am in aerosols shortly after the FDNPP incident occurred. <i>Geochemical Journal</i> , 2021 , 55, 33-38	0.9	O
178	Anthropogenic U and U in the Baltic Sea: Distributions, source terms, and budgets <i>Water Research</i> , 2021 , 210, 117987	12.5	О
177	Revisiting the Middle and Upper Palaeolithic archaeology of Gruta do Caldeir® (Tomar, Portugal). <i>PLoS ONE</i> , 2021 , 16, e0259089	3.7	3
176	Cova de les Malladetes (Valencia, Spain): New Insights About the Early Upper Palaeolithic in the Mediterranean Basin of the Iberian Peninsula. <i>Journal of Paleolithic Archaeology</i> , 2021 , 4, 1	2.4	6
175	Prehistoric salt mining in Hallstatt, Austria. New chronologies out of small wooden fragments. <i>Dendrochronologia</i> , 2021 , 66, 125814	2.8	6
174	70-Year Anthropogenic Uranium Imprints of Nuclear Activities in Baltic Sea Sediments. <i>Environmental Science & Environmental S</i>	10.3	4
173	An unknown source of reactor radionuclides in the Baltic Sea revealed by multi-isotope fingerprints. <i>Nature Communications</i> , 2021 , 12, 823	17.4	9
172	On the Quality Control for the Determination of Ultratrace-Level U and U in Environmental Samples by Accelerator Mass Spectrometry. <i>Analytical Chemistry</i> , 2021 , 93, 3362-3369	7.8	3
171	Highly sensitive 26Al measurements by Ion-Laser-InterAction Mass Spectrometry. <i>International Journal of Mass Spectrometry</i> , 2021 , 465, 116576	1.9	4
170	Comparison and performance of two cosmogenic nuclide sample preparation procedures of in situ produced 10Be and 26Al. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2021 , 329, 1523-1536	1.5	1
169	First dataset of U and U around the Greenland coast: A 5-year snapshot (2012-2016). <i>Chemosphere</i> , 2020 , 257, 127185	8.4	6
168	The quest for AMS of 182Hf why poor gas gives pure beams. <i>EPJ Web of Conferences</i> , 2020 , 232, 02003	0.3	3
167	Pushing Limits of ICP-MS/MS for the Determination of Ultralow U/U Isotope Ratios. <i>Analytical Chemistry</i> , 2020 , 92, 7869-7876	7.8	8
166	Nature Does the Averaging I h-Situ Produced 10Be, 21Ne, and 26Al in a Very Young River Terrace. <i>Geosciences (Switzerland)</i> , 2020 , 10, 237	2.7	4
165	U/U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout. <i>Nature Communications</i> , 2020 , 11, 1275	17.4	19

(2018-2020)

164	Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia). <i>Meteoritics and Planetary Science</i> , 2020 , 55, 274-293	2.8	2
163	Radiocarbon analysis of carbonaceous aerosols in Bratislava, Slovakia. <i>Journal of Environmental Radioactivity</i> , 2020 , 218, 106221	2.4	5
162	New fluoride target matrix preparation procedure for determination of 236U with accelerator mass spectrometry. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2020 , 472, 64-71	1.2	5
161	Search for beta-delayed proton emission from (^{11})Be. European Physical Journal A, 2020 , 56, 1	2.5	6
160	The movements of Alpine glaciers throughout the last 10,000 years as sensitive proxies of temperature and climate changes. <i>EPJ Web of Conferences</i> , 2020 , 232, 02002	0.3	1
159	36Cl in a new light: AMS measurements assisted by ion-laser interaction. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2019 , 456, 163-168	1.2	3
158	The actinide beamline at VERA. Nuclear Instruments & Methods in Physics Research B, 2019, 458, 82-89	1.2	7
157	129I concentration in a high-mountain environment. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2019 , 456, 193-202	1.2	
156	The ILIAMS project IAn RFQ ion beam cooler for selective laser photodetachment at VERA. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2019 , 456, 213-217	1.2	6
155	2500 years of anthropogenic and climatic landscape transformation in the Stymphalia polje, Greece. <i>Quaternary Science Reviews</i> , 2019 , 213, 133-154	3.9	14
154	Update on the Absolute Chronology of the Migration period in Central Europe (375\(\bar{6}\)68 AD): new data from Maria ponsee, Lower Austria. <i>Radiocarbon</i> , 2019 , 61, 1653-1662	4.6	1
153	Radionuclides in surface waters around the damaged Fukushima Daiichi NPP one month after the accident: Evidence of significant tritium release into the environment. <i>Science of the Total Environment</i> , 2019 , 689, 451-456	10.2	19
152	Comparison of methods for the detection of 10Be with AMS and a new approach based on a silicon nitride foil stack. <i>International Journal of Mass Spectrometry</i> , 2019 , 444, 116175	1.9	7
151	14C Bomb Peak Analysis of African Elephant Tusks and its Relation to Cites. <i>Radiocarbon</i> , 2019 , 61, 161	9 ₄ 1 6 24	1 6
150	14C-Dating of the Late Bronze Age City of Hala Sultan Tekke, Cyprus: Status Report. <i>Radiocarbon</i> , 2019 , 61, 1253-1264	4.6	1
149	Stellar and thermal neutron capture cross section of Be9. <i>Physical Review C</i> , 2019 , 99,	2.7	1
148	The increase of soil organic carbon as proposed by the "4/1000 initiative" is strongly limited by the status of soil development - A case study along a substrate age gradient in Central Europe. <i>Science of the Total Environment</i> , 2018 , 628-629, 840-847	10.2	15
147	Radiocarbon re-dating of contact-era Iroquoian history in northeastern North America. <i>Science Advances</i> , 2018 , 4, eaav0280	14.3	25

146	Limits on Supernova-Associated ^{60}Fe/^{26}Al Nucleosynthesis Ratios from Accelerator Mass Spectrometry Measurements of Deep-Sea Sediments. <i>Physical Review Letters</i> , 2018 , 121, 221103	7.4	12
145	Selective laser photodetachment of intense atomic and molecular negative ion beams with the ILIAS RFQ ion beam cooler. <i>International Journal of Mass Spectrometry</i> , 2017 , 415, 9-17	1.9	9
144	Plutonium Isotopes (Pu) Dissolved in Pacific Ocean Waters Detected by Accelerator Mass Spectrometry: No Effects of the Fukushima Accident Observed. <i>Environmental Science & Technology</i> , 2017 , 51, 2031-2037	10.3	15
143	Vertical distribution of U in the North Pacific Ocean. <i>Journal of Environmental Radioactivity</i> , 2017 , 169-170, 70-78	2.4	20
142	Reconstruction of the temporal distribution of 236U/238U in the Northwest Pacific Ocean using a coral core sample from the Kuroshio Current area. <i>Marine Chemistry</i> , 2017 , 190, 28-34	3.7	11
141	Anthropogenic U in Danish Seawater: Global Fallout versus Reprocessing Discharge. <i>Environmental Science & Environmental Scien</i>	10.3	20
140	The Tyrolean Iceman and His Glacial Environment During the Holocene. <i>Radiocarbon</i> , 2017 , 59, 395-405	4.6	11
139	D-REAMS: A New Compact AMS System for Radiocarbon Measurements at the Weizmann Institute of Science, Rehovot, Israel. <i>Radiocarbon</i> , 2017 , 59, 775-784	4.6	21
138	Radiocarbon concentration in tree-ring samples collected in the south-west Slovakia (1974-2013). <i>Applied Radiation and Isotopes</i> , 2017 , 126, 58-60	1.7	8
137	Precise measurement of the thermal and stellar Fe54(n,DFe55 cross sections via accelerator mass spectrometry. <i>Physical Review C</i> , 2017 , 96,	2.7	9
136	Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. <i>Heliyon</i> , 2017 , 3, e00435	3.6	83
135	Preparation Methods of 3 Carbon Samples for 14C MeasuremenTS. <i>Radiocarbon</i> , 2017 , 59, 803-814	4.6	9
134	Multiactinide Analysis with Accelerator Mass Spectrometry for Ultratrace Determination in Small Samples: Application to an in Situ Radionuclide Tracer Test within the Colloid Formation and Migration Experiment at the Grimsel Test Site (Switzerland). <i>Analytical Chemistry</i> , 2017 , 89, 7182-7189	7.8	5
133	Sorption of uranium on freshly prepared hydrous titanium oxide and its utilization in determination of 236U using accelerator mass spectrometry. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2017 , 311, 447-453	1.5	4
132	Temporal and vertical distributions of anthropogenic 236U in the Japan Sea using a coral core and seawater samples. <i>Journal of Geophysical Research: Oceans</i> , 2016 , 121, 4-13	3.3	21
131	Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters. <i>Science of the Total Environment</i> , 2016 , 556, 53-62	10.2	25
130	European roe deer antlers as an environmental archive for fallout (236)U and (239)Pu. <i>Journal of Environmental Radioactivity</i> , 2016 , 151 Pt 3, 587-92	2.4	8
129	Dating a small impact crater: An age of Kaali crater (Estonia) based on charcoal emplaced within proximal ejecta. <i>Meteoritics and Planetary Science</i> , 2016 , 51, 681-695	2.8	9

128	Recent near-Earth supernovae probed by global deposition of interstellar radioactive (60)Fe. <i>Nature</i> , 2016 , 532, 69-72	50.4	152
127	First study on U in the Northeast Pacific Ocean using a new target preparation procedure for AMS measurements. <i>Journal of Environmental Radioactivity</i> , 2016 , 162-163, 244-250	2.4	18
126	Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes. <i>Soil Biology and Biochemistry</i> , 2015 , 88, 29-38	7.5	36
125	Accelerator Mass Spectrometry of Actinides in Ground- and Seawater: An Innovative Method Allowing for the Simultaneous Analysis of U, Np, Pu, Am, and Cm Isotopes below ppq Levels. <i>Analytical Chemistry</i> , 2015 , 87, 5766-73	7.8	21
124	On the effect of organic carbon on rehydroxylation (RHX) dating. <i>Journal of Archaeological Science</i> , 2015 , 57, 92-97	2.9	10
123	Abundance of live P u in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. <i>Nature Communications</i> , 2015 , 6, 5956	17.4	111
122	Method for (236)U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry. <i>Analytical Chemistry</i> , 2015 , 87, 7411-7	7.8	20
121	A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia). <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 342, 321-326	1.2	16
120	Uran aus deutschen Nuklearprojekten der 1940er Jahre Eine nuklearforensische Untersuchung. <i>Angewandte Chemie</i> , 2015 , 127, 13654-13658	3.6	6
119	The ILIAS project for selective isobar suppression by laser photodetachment. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 361, 217-221	1.2	9
118	He stripping for AMS of 236U and other actinides using a 3 MV tandem accelerator. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 361, 458-464	1.2	22
117	Uranium from German Nuclear Power Projects of the 1940sA Nuclear Forensic Investigation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13452-6	16.4	29
116	Novel method to study neutron capture of 235U and 238U simultaneously at keV energies. <i>Physical Review Letters</i> , 2014 , 112, 192501	7.4	30
115	Airborne Plutonium and non-natural Uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. <i>Environmental Science & Environmental Science & Environment</i>	140.3	71
114	Isotopic compositions of (236)U and Pu isotopes in "black substances" collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident. <i>Environmental Science & Environmental Science & Environment</i>	10.3	66
113	Preparation of pure TiO2 sorption material. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2014 , 300, 1151-1158	1.5	2
112	High-precision dendro-14C dating of two cedar wood sequences from First Intermediate Period and Middle Kingdom Egypt and a small regional climate-related 14C divergence. <i>Journal of Archaeological Science</i> , 2014 , 46, 401-416	2.9	18
111	Evidence for Early Human Presence at High Altitudes in the Eztal Alps (Austria/Italy). <i>Radiocarbon</i> , 2014 , 56, 923-947	4.6	19

110	Second Radiocarbon Intercomparison Program for the Chauvetpont d'Arc Cave, Arddhe, France. <i>Radiocarbon</i> , 2014 , 56, 833-850	4.6	
109	Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. <i>Tectonics</i> , 2013 , 32, 1107-1120	4.3	27
108	A review on 129I analysis in air. Journal of Environmental Radioactivity, 2013, 126, 45-54	2.4	27
107	Determination of (239)Pu, (240)Pu, (241)Pu and (242)Pu at femtogram and attogram levels - evidence for the migration of fallout plutonium in an ombrotrophic peat bog profile. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 839-47	4.3	25
106	Measurements of III in ancient and modern peat samples and implications for postdepositional migration of fallout radionuclides. <i>Environmental Science & Environmental Scienc</i>	10.3	28
105	Investigation of the isotopic ratio 129I/I in petrified wood. <i>Journal of Environmental Radioactivity</i> , 2013 , 120, 33-8	2.4	4
104	Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2013 , 47, 3091-8	10.3	149
103	236U/238U and 240Pu/239Pu isotopic ratios in small (2 L) sea and river water samples. <i>Journal of Environmental Radioactivity</i> , 2013 , 116, 54-8	2.4	41
102	AMS of 36Cl with the VERA 3 MV tandem accelerator. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 294, 115-120	1.2	15
101	Stable platinum isotope measurements in presolar nanodiamonds by TEAMS. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 294, 496-502	1.2	2
100	Carbon background and ionization yield of an AMS system during 14C measurements of microgram-size graphite samples. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 294, 335-3	3 ¹ 9 ²	8
99	AMS of the Minor Plutonium Isotopes. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 294, 160-164	1.2	22
98	Sequential injection method for rapid and simultaneous determination of 236U, 237Np, and Pu isotopes in seawater. <i>Analytical Chemistry</i> , 2013 , 85, 11026-33	7.8	26
97	Study on Anthropogenic Uranium Isotope U-236 in the Environment [Application for Oceanic Circulation Tracer []Bunseki Kagaku, 2013 , 62, 1001-1012	0.2	1
96	A New UV Oxidation Setup for Small Radiocarbon Samples in Solution. <i>Radiocarbon</i> , 2013 , 55, 373-382	4.6	5
95	Constraints on the major sources of dissolved organic carbon in Alpine ice cores from radiocarbon analysis over the bomb-peak period. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 3319-3	3 27	23
94	14C Dating of Humic Acids from Bronze and Iron Age Plant Remains from the Eastern Mediterranean. <i>Radiocarbon</i> , 2013 , 55, 599-607	4.6	20
93	Cesium, iodine and tritium in NW Pacific waters 🗈 comparison of the Fukushima impact with global fallout. <i>Biogeosciences</i> , 2013 , 10, 5481-5496	4.6	94

(2011-2013)

92	A New UV Oxidation Setup for Small Radiocarbon Samples in Solution. <i>Radiocarbon</i> , 2013 , 55,	4.6	2
91	14C Dating of Humic Acids from Bronze and Iron Age Plant Remains from the Eastern Mediterranean. <i>Radiocarbon</i> , 2013 , 55,	4.6	3
90	Light induced suppression of sulfur in a cesium sputter ion source. <i>International Journal of Mass Spectrometry</i> , 2012 , 315, 55-59	1.9	3
89	Iodine-129 in animal thyroids from Argentina. Science of the Total Environment, 2012, 430, 231-6	10.2	5
88	Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident. <i>Geochemical Journal</i> , 2012 , 46, 355-360	0.9	83
87	Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. <i>Nature Geoscience</i> , 2012 , 5, 710-714	18.3	200
86	Iodine isotopes (127I and 129I) in aerosols at high altitude Alp stations. <i>Environmental Science & Environmental Science</i>	10.3	10
85	Retrospective measurements of airborne 129iodine in Austria. <i>Journal of Environmental Radioactivity</i> , 2012 , 112, 90-5	2.4	5
84	Uranium-236 as a new oceanic tracer: A first depth profile in the Japan Sea and comparison with caesium-137. <i>Earth and Planetary Science Letters</i> , 2012 , 333-334, 165-170	5.3	61
83	Bomb fall-out U as a global oceanic tracer using an annually resolved coral core. <i>Earth and Planetary Science Letters</i> , 2012 , 359-360, 124-130	5.3	56
82	The Chronology of Tell El-Daba: A Crucial Meeting Point of 14C Dating, Archaeology, and Egyptology in the 2nd Millennium BC. <i>Radiocarbon</i> , 2012 , 54, 407-422	4.6	40
81	Assessment of the radiological impact of a decommissioned nuclear power plant in Italy. <i>Radioprotection</i> , 2012 , 47, 285-297	1.1	13
80	The age of olfactory bulb neurons in humans. <i>Neuron</i> , 2012 , 74, 634-9	13.9	281
79	AMS Applications in Nuclear Astrophysics: New Results for 13C(n, []) 14C and 14N(n,p) 14C. <i>Publications of the Astronomical Society of Australia</i> , 2012 , 29, 115-120	5.5	11
78	Investigation of the 236U/238U isotope abundance ratio in uranium ores and yellow cake samples. <i>Radiochimica Acta</i> , 2011 , 99, 335-339	1.9	23
77	Dynamics of human adipose lipid turnover in health and metabolic disease. <i>Nature</i> , 2011 , 478, 110-3	50.4	259
76	Recent advances in AMS of 36Cl with a 3-MV-tandem. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2011 , 269, 3188-3191	1.2	11
75	Reassessment of 182Hf AMS measurements at VERA. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2011 , 269, 3180-3182	1.2	9

74	AMS analysis of iodine-129 in aerosols from Austria. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2011 , 269, 3183-3187	1.2	16
73	Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 3125-32	4.4	44
72	Determination of U, Pu and Am isotopes in Irish Sea sediment by a combination of AMS and radiometric methods. <i>Journal of Environmental Radioactivity</i> , 2011 , 102, 331-5	2.4	22
71	Depth profile of III/III in soil samples in La Palma, Canary Islands. <i>Journal of Environmental Radioactivity</i> , 2011 , 102, 614-9	2.4	33
70	Studies on the Preparation of Small 14C Samples with an RGA and 13C-Enriched Material. <i>Radiocarbon</i> , 2010 , 52, 1394-1404	4.6	17
69	Robust Bayesian Analysis, an Attempt to Improve Bayesian Sequencing. <i>Radiocarbon</i> , 2010 , 52, 962-983	4.6	5
68	Fluorides or hydrides? 41Ca performance at VERA® 3-MV AMS facility. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 799-803	1.2	9
67	The new injection beamline at VERA. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 824-826	1.2	8
66	Analysis and application of heavy isotopes in the environment. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 1045-1049	1.2	60
65	Feasibility of using 236U to reconstruct close-in fallout deposition from the Hiroshima atomic bomb. <i>Science of the Total Environment</i> , 2010 , 408, 5392-8	10.2	32
64	36Cl exposure dating with a 3-MV tandem. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 744-747	1.2	11
63	Comparison of detector systems for the separation of 36Cl and 36S with a 3-MV tandem. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 847-850	1.2	5
62	Determination of the isotopic ratio 236U/238U in Austrian water samples. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 1146-1149	1.2	23
61	Pego do Diabo (Loures, Portugal): dating the emergence of anatomical modernity in westernmost Eurasia. <i>PLoS ONE</i> , 2010 , 5, e8880	3.7	64
60	14C Dating of the Upper Paleolithic Site at Krems-Wachtberg, Austria. <i>Radiocarbon</i> , 2009 , 51, 847-855	4.6	29
59	Calorimetric low temperature detectors for low-energetic heavy ions and their application in accelerator mass spectrometry. <i>Review of Scientific Instruments</i> , 2009 , 80, 103304	1.7	8
58	First results on 236U levels in global fallout. Science of the Total Environment, 2009, 407, 4238-42	10.2	110
57	The first use of (236)U in the general environment and near a shutdown nuclear power plant. <i>Applied Radiation and Isotopes</i> , 2009 , 67, 1775-80	1.7	42

(2006-2008)

56	The 410,000 year terrestrial age of eucrite RB Cuarto 001. <i>Meteoritics and Planetary Science</i> , 2008 , 43, 805-813	2.8	2
55	Vertical distribution of 238Pu, 239(40)Pu, 241Am, 90Sr and 137Cs in Austrian soil profiles. <i>Radiochimica Acta</i> , 2008 , 96,	1.9	17
54	Measurement of the stellar cross sections for the reactions9Be(n,D)10Be and13C(n,D)14C via AMS. <i>Journal of Physics G: Nuclear and Particle Physics</i> , 2008 , 35, 014018	2.9	18
53	On the AMS and EPR Studies of Chinese Cultural Objects. <i>Journal of the Chinese Chemical Society</i> , 2008 , 55, 572-577	1.5	O
52	14C Dating of the Upper Paleolithic Site at Krems-Hundssteig in Lower Austria. <i>Radiocarbon</i> , 2008 , 50, 1-10	4.6	48
51	Characterization and improvement of thin natural diamond detectors for spectrometry of heavy ions below 1MeV/amu. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2008 , 590, 221-226	1.2	2
50	Natural and anthropogenic 236U in environmental samples. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 2246-2250	1.2	131
49	Isobar suppression in AMS using laser photodetachment. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 4565-4568	1.2	15
48	A combined method for the determination of the isotopic vector of plutonium isotopes in environmental samples. <i>Journal of Radioanalytical and Nuclear Chemistry</i> , 2008 , 276, 789-793	1.5	24
47	Applications of a compact ionization chamber in AMS at energies below 1 MeV/amu. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 2213-2216	1.2	18
46	A device for automated phase space measurement of ion beams. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 259, 140-143	1.2	
45	AMS of natural 236U and 239Pu produced in uranium ores. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 259, 727-732	1.2	26
44	Ion source refinement at VERA. Nuclear Instruments & Methods in Physics Research B, 2007, 259, 94-99	1.2	9
43	Developments toward the measurement of I-129 in lignite. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 259, 714-720	1.2	11
42	Chronology for the Aegean Late Bronze Age 1700-1400 B.C. Science, 2006, 312, 565-9	33.3	131
41	Radiocarbon Determination of Particulate Organic Carbon in Non-Temperated, Alpine Glacier Ice. <i>Radiocarbon</i> , 2006 , 48, 69-82	4.6	22
40	AMSA powerful tool for probing nucleosynthesis via long-lived radionuclides. <i>European Physical Journal A</i> , 2006 , 27, 337-342	2.5	6
39	AMS A powerful tool for probing nucleosynthesis via long-lived radionuclides 2006 , 337-342		

38	Determination of plutonium in environmental samples by AMS and alpha spectrometry. <i>Applied Radiation and Isotopes</i> , 2005 , 63, 633-8	1.7	47
37	Opportunities and limits of AMS with 3-MV tandem accelerators. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2005 , 240, 445-451	1.2	26
36	The IIOF detector for isobar separation at ion energies below 1MeV/amu. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2005 , 240, 490-494	1.2	20
35	182Hf IFROM GEOPHYSICS TO ASTROPHYSICS. <i>Nuclear Physics A</i> , 2005 , 758, 340-343	1.3	9
34	Direct dating of Early Upper Palaeolithic human remains from Mladec. <i>Nature</i> , 2005 , 435, 332-5	50.4	121
33	AMS Radiocarbon Dating of Bone Samples from the Xinzhai Site in China. <i>Radiocarbon</i> , 2005 , 47, 21-25	4.6	6
32	Experimental and theoretical evidence for long-lived molecular hydrogen anions H2- and D2 <i>Physical Review Letters</i> , 2005 , 94, 223003	7·4	38
31	Pushing the Precision Limit of 14C AMS. <i>Radiocarbon</i> , 2004 , 46, 5-16	4.6	49
30	Neolithic Massacres: Local Skirmishes or General Warfare in Europe?. Radiocarbon, 2004, 46, 377-385	4.6	32
29	VERA, an AMS facility for Ellisotopes. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 223-224, 67-71	1.2	47
28	First tests with a natural diamond detector (NDD) he possibly powerful tool for AMS. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 223-224, 205-208	1.2	5
27	Developing a detection method of environmental 244Pu. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 223-224, 817-822	1.2	11
26	182Hf, a new isotope for AMS. Nuclear Instruments & Methods in Physics Research B, 2004 , 223-224, 823-	81228	32
25	Search for live 182Hf in deep-sea sediments. <i>New Astronomy Reviews</i> , 2004 , 48, 161-164	7.9	25
24	First application of calorimetric low-temperature detectors in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 63-66	1.2	12
23	New half-life measurement of 182Hf: improved chronometer for the early solar system. <i>Physical Review Letters</i> , 2004 , 93, 172501	7.4	113
22	A 14C Calibration with AMS from 3500 to 3000 BC, Derived from A New High-Elevation Stone-Pine Tree-Ring Chronology. <i>Radiocarbon</i> , 2004 , 46, 969-978	4.6	18
21	Investigation of a Chinese Ink Rubbing by 14C AMS Analysis. <i>Radiocarbon</i> , 2003 , 45, 1-7	4.6	2

20	Accelerator mass spectrometry of heavy long-lived radionuclides. <i>International Journal of Mass Spectrometry</i> , 2003 , 223-224, 713-732	1.9	102
19	Heavy ion AMS with a ElmallElaccelerator. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 188, 283-287	1.2	46
18	Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator 2002 , 59, 1041-1051		5
17	New Methods and Critical Aspects in Bayesian Mathematics for 14C Calibration. <i>Radiocarbon</i> , 2001 , 43, 373-380	4.6	20
16	The Filling of Gaps in Geophysical Time Series by Artificial Neural Networks. <i>Radiocarbon</i> , 2001 , 43, 365	-347.61	12
15	Age Determination of Fossil Bones from the Vindija Neanderthal Site in Croatia. <i>Radiocarbon</i> , 2001 , 43, 1021-1028	4.6	30
14	New Chronological Frame for the Young Neolithic Baden Culture in Central Europe (4th Millennium BC). <i>Radiocarbon</i> , 2001 , 43, 1057-1064	4.6	10
13	Developments towards a fully automated AMS system. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 161-163, 250-254	1.2	11
12	Automated evaluation of C AMS measurements. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 172, 274-280	1.2	12
11	Accelerator Mass Spectrometry Analysis of Non-Soluble Carbon in Aerosol Particles from High Alpine Snow (Mt. Sonnblich, Austria). <i>Radiocarbon</i> , 2000 , 42, 285-294	4.6	8
10	The Use of Bayesian Statistics for 14C Dates of Chronologically Ordered Samples: A Critical Analysis. <i>Radiocarbon</i> , 2000 , 42, 183-198	4.6	95
9	AMS 14C Dating of Equipment from the Iceman and of Spruce Logs from the Prehistoric Salt Mines of Hallstatt. <i>Radiocarbon</i> , 1999 , 41, 183-197	4.6	17
8	Comparative biotransformation studies of MeIQx and PhIP in animal models and humans. <i>Cancer Letters</i> , 1999 , 143, 161-5	9.9	44
7	Double-differential neutron emission cross sections of 14-MeV neutron induced reactions on Na and Pb. <i>Physical Review C</i> , 1997 , 56, 1424-1437	2.7	
6	First 14C Results from Archaeological and Forensic Studies at the Vienna Environmental Research Accelerator. <i>Radiocarbon</i> , 1997 , 40, 273-281	4.6	26
5	Systematic Investigations of 14C Measurements at the Vienna Environmental Research Accelerator. <i>Radiocarbon</i> , 1997 , 40, 255-263	4.6	15
4	14C Measurements of Sub-Milligram Carbon Samples from Aerosols. <i>Radiocarbon</i> , 1997 , 40, 265-272	4.6	9
3	First performance tests of VERA. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 123, 193-1	98.2	21

VERA: A new AMS facility in Vienna. *Nuclear Instruments & Methods in Physics Research B*, **1997**, 123, 47-5**0**.2 39

4.6 1

5 YEARS OF ION-LASER INTERACTION MASS SPECTROMETRY TATUS AND PROSPECTS OF ISOBAR SUPPRESSION IN AMS BY LASERS. *Radiocarbon*,1-14