Rytis Buzelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5336160/publications.pdf

Version: 2024-02-01

55	362	933264	839398
papers	citations	h-index	g-index
56	56	56	187
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sculptured anti-reflection coatings for high power lasers. Optical Materials Express, 2017, 7, 1249.	1.6	48
2	Next generation highly resistant mirrors featuring all-silica layers. Scientific Reports, 2017, 7, 10898.	1.6	46
3	High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors. Optical Materials, 2019, 95, 109245.	1.7	33
4	Argon plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings. Optical Materials Express, 2017, 7, 3598.	1.6	24
5	Oxygen plasma etching of fused silica substrates for high power laser optics. Applied Surface Science, 2018, 453, 477-481.	3.1	22
6	Influence of electric field distribution on laser induced damage threshold and morphology of high reflectance optical coatings. Proceedings of SPIE, 2007, , .	0.8	21
7	Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG:Nd laser. Soviet Journal of Quantum Electronics, 1985, 15, 1335-1337.	0.1	19
8	Fabrication of Nb2O5/SiO2 mixed oxides by reactive magnetron co-sputtering. Thin Solid Films, 2015, 589, 95-104.	0.8	16
9	Optical resistance and spectral properties of anti-reflective coatings deposited on LBO crystals by ion beam sputtering. Lithuanian Journal of Physics, 2011, 51, 303-308.	0.1	15
10	Compression of the Nd: YAP laser pulse by two-stage stimulated backward scattering. Optics Communications, 1989, 73, 251-256.	1.0	10
11	Highly Resistant Zeroâ€Order Waveplates Based on Allâ€Silica Multilayer Coatings. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700764.	0.8	10
12	Stimulated-Brillouin-scattering compression of pulses from an Nd : YAG laser with a short cavity and measurement of the nonradiative relaxation time of the lower active level. Quantum Electronics, 1995, 25, 540-543.	0.3	9
13	Highly resistant all-silica polarizing coatings for normal incidence applications. Optics Letters, 2021, 46, 916.	1.7	9
14	The microstructure and LIDT of Nb 2 O 5 and Ta 2 O 5 optical coatings. , 2006, , .		7
15	Highly Resistant Zeroâ€Order Waveplates Based on Allâ€6ilica Multilayer Coatings (Phys. Status Solidi A) Tj ETQo	q1 _{1.0} .784	4314 rgBT / <mark>O</mark>
16	Next-generation all-silica coatings for UV applications. , 2017, , .		7
17	Multistage stimulated-scattering compression of pulses from a YAG:Nd laser. Soviet Journal of Quantum Electronics, 1987, 17, 1444-1446.	0.1	6
18	Nd:YAP laser pulse compression by three-stage transient stimulated Brillouin and Raman scattering. European Physical Journal D, 1991, 41, 733-742.	0.4	5

#	Article	IF	CITATIONS
19	<title>Numerical analysis and experimental investigation of beam quality of SBS compressor with multipass Nd:YAG amplifier</title> ., 1996, 2772, 158.		5
20	$$ $$ $$ $$ $$ $$ $$ $$ $$		5
21	Effect of conventional fused silica preparation and deposition techniques on surface roughness, scattering, and laser damage resistance. Proceedings of SPIE, 2012, , .	0.8	5
22	Assessment of effective-medium theories of ion-beam sputtered Nb ₂ 0 ₅ â€"SiO ₂ and ZrO ₂ â€"SiO ₂ mixtures. Lithuanian Journal of Physics, 2014, 54, 99-105.	0.1	5
23	Investigation in oxide mixture coatings with adapted gradient index profiles. , 2009, , .		4
24	Comparison of optical resistance of ion assisted deposition and standard electron beam deposition methods for high reflectance dielectric coatings. , 2005, , .		3
25	Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates. , 2013, , .		3
26	Enhancement of high reflectivity mirrors using the combination of standard and sculptured thin films. Optics and Laser Technology, 2020, 129, 106292.	2.2	3
27	<title>Laser-induced damage threshold measurements of high reflecting dielectric layers</title> ., 2006,,.		2
28	Characterization and application of HfO $<$ sub $>$ 2 $<$ /sub $>$ -SiO $<$ sub $>$ 2 $<$ /sub $>$ mixtures produced by ion-beam sputtering technology. Proceedings of SPIE, 2013, , .	0.8	2
29	Plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings. , 2016, , .		2
30	Enhancement of optical resistance in high reflectivity coatings using oblique angle deposition method., $2018, \ldots$		2
31	Influence of ion-assisted deposition on laser-induced damage threshold and microstructure of optical coatings., 2005, 5991, 436.		1
32	Effect of substrate temperature and ion assistance on nanosecond laser-induced damage threshold in high reflection dielectric coatings., 2005, 5991, 409.		1
33	Effect of deposition method and substrate surface quality on laser-induced damage threshold for repetitive 13-ns and 130-fs pulses. , 2005, , .		1
34	OPTICAL COATINGS FORMED BY GRADIENT REFRACTIVE INDEX MATERIALS / METALÅ ² OKSIDÅ ² IR JÅ ² MIÅINIÅ ² PANAUDOJIMAS KINTAMO LÅ ⁴ Å ¹ / ₂ IO RODIKLIO OPTINÄ—MS DANGOMS FORMUOTI. Science: Future of Lithuania, 2012, 3, 85-90.	0.0	1
35	Sculptured thin film based all-silica mirrors for high power lasers. , 2021, , .		1
36	Anisotropic coatings for normal incidence applications. , 2018, , .		1

#	Article	IF	CITATIONS
37	Optical anisotropic coatings for polarization control in high-power lasers. , 2019, , .		1
38	Parametric generation of tunable picosecond light pulses as a result of pumping with radiation from a stimulated Raman scattering compressor. Soviet Journal of Quantum Electronics, 1988, 18, 1035-1037.	0.1	0
39	Effective SBS pulse compression to >100 ps in liquid CCI/sub 4/ and fluorocarbon., 0,,.		0
40	Effect of deposition method on laser-induced damage threshold for repetitive pulses. , 0, , .		0
41	<title>Improvement of optical properties and radiation resistance of optical coatings based on Nb<formula><inf><roman>2</roman></inf></formula> and Ta<formula><inf><roman>5</roman></inf></formula> Ta<formula><inf><roman>2</roman></inf></formula></td><td>title>.</td><td>0</td></tr><tr><td>42</td><td><title>Optimization of HfO<formula><inf><roman>2</roman></inf></formula>, Al<formula><inf><roman>2</roman></inf></formula>O<formula><inf><roman>3</roman></inf></formula> and SiO<formula><inf><roman>2</roman></inf></formula> deposition leading to advanced UV optical coatings with low extinction</title> .,2006,,.		0
43	Nb2O5-SiO2 mixtures produced by reactive DC and RF magnetron sputtering. , 2013, , .		O
44	Optical Properties of HfO_2 Thin Films Grown by Atomic Layer Deposition < br />. , 2016, , .		0
45	Glancing angle deposition for production of optical components in UV region. , 2016, , .		0
46	The Capabilities to Form Multilayer Nanostructured Coatings and Their Applications for Waveplates Production. , $2019, \ldots$		0
47	Highly resistant all-silica polarizers for normal incidence applications. , 2021, , .		0
48	Optical Elements for UV Applications Produced by Serial Bi-Deposition. , 2016, , .		0
49	New generation all-silica based optical elements for high power laser systems. , 2017, , .		0
50	Advanced design of UV waveplates based on nano-structured thin films. , 2017, , .		0
51	High LIDT mirrors for 355nm wavelength based on combined ion beam sputtering and glancing angle deposition technique. , 2017, , .		0
52	Enhancement of optical resistance in high reflectivity mirrors using sculptured thin films. , 2018, , .		0
53	Anizotropic Optical Coatings for Polarization Control in High-power Lasers. , 2019, , .		0
54	Optical elements with significantly increased resistance to laser radiation. , 2019, , .		0