Jian Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335920/publications.pdf Version: 2024-02-01

LIAN XIE

#	Article	IF	CITATIONS
1	Condensation heat transfer deterioration on superhydrophobic surface with dense nanostructures. Journal of Physics: Conference Series, 2022, 2230, 012027.	0.3	0
2	The K number, a new analogy criterion number to connect pressure drop and heat transfer of sCO2 in vertical tubes. Applied Thermal Engineering, 2021, 182, 116078.	3.0	23
3	Heat Transfer Prediction of Supercritical Carbon Dioxide in Vertical Tube Based on Artificial Neural Networks. Journal of Thermal Science, 2021, 30, 1751-1767.	0.9	9
4	In-situ phase separation to improve phase change heat transfer performance. Energy, 2021, 230, 120845.	4.5	7
5	Mixed dropwise-filmwise condensation heat transfer on biphilic surface. International Journal of Heat and Mass Transfer, 2020, 150, 119273.	2.5	29
6	Critical supercritical-boiling-number to determine the onset of heat transfer deterioration for supercritical fluids. Solar Energy, 2020, 195, 27-36.	2.9	39
7	The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation. International Journal of Heat and Mass Transfer, 2020, 148, 119080.	2.5	58
8	A comprehensive comparison between substrate heating and light heating induced nanofluid droplet evaporations. Applied Thermal Engineering, 2020, 175, 115389.	3.0	8
9	Synergetics: The cooperative phenomenon in multi-compressions S-CO2 power cycles. Energy Conversion and Management: X, 2020, 7, 100042.	0.9	10
10	A New Mechanism of Lightâ€Induced Bubble Growth to Propel Microbubble Piston Engine. Small, 2020, 16, e2001548.	5.2	20
11	Multiscale Characteristic in Symmetric/Asymmetric Solar-Driven Nanofluid Droplet Evaporation. Langmuir, 2020, 36, 1680-1690.	1.6	5
12	Perspective of Sâ^'CO2 power cycles. Energy, 2019, 186, 115831.	4.5	106
13	Analysis of a coal-fired power system integrated with a reheat S-CO2 cycle. Energy Procedia, 2019, 158, 1461-1466.	1.8	2
14	A comprehensive understanding of enhanced condensation heat transfer using phase separation concept. Energy, 2019, 172, 661-674.	4.5	21
15	Special Issue dedicated to the 1st International Conference on Supercritical CO2 Power System (ICSCPS 2018). Journal of Thermal Science, 2019, 28, 393-393.	0.9	1
16	Supercritical "boiling―number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes. International Journal of Thermal Sciences, 2019, 136, 254-266.	2.6	112
17	The critical nanofluid concentration as the crossover between changed and unchanged solar-driven droplet evaporation rates. Nano Energy, 2019, 57, 791-803.	8.2	27
18	Convective dropwise condensation heat transfer in mini-channels with biphilic surface. International Journal of Heat and Mass Transfer, 2019, 134, 69-84.	2.5	27

JIAN XIE

#	Article	IF	CITATIONS
19	Dropwise condensation on superhydrophobic nanostructure surface, Part I: Long-term operation and nanostructure failure. International Journal of Heat and Mass Transfer, 2019, 129, 86-95.	2.5	59
20	Mode selection between sliding and rolling for droplet on inclined surface: Effect of surface wettability. International Journal of Heat and Mass Transfer, 2018, 122, 45-58.	2.5	46
21	Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface. International Journal of Heat and Mass Transfer, 2018, 116, 951-968.	2.5	18
22	Dropwise condensation on superhydrophobic nanostructure surface, part II: Mathematical model. International Journal of Heat and Mass Transfer, 2018, 127, 1170-1187.	2.5	38
23	Large scale generation of micro-droplet array by vapor condensation on mesh screen piece. Scientific Reports, 2017, 7, 39932.	1.6	9
24	Tests on strengths of steel strand and strand oncrete (or cement slurry) bond stress under cryogenic temperatures. Structural Concrete, 2017, 18, 872-882.	1.5	7
25	Coupling Diffusion Welding Technique and Mesh Screen Creates Heterogeneous Metal Surface for Droplets Array. Advanced Materials Interfaces, 2017, 4, 1700684.	1.9	17
26	Water drop impacts on a single-layer of mesh screen membrane: Effect of water hammer pressure and advancing contact angles. Experimental Thermal and Fluid Science, 2017, 82, 83-93.	1.5	37
27	Experimental study on the flexural behavior of stone beams strengthened with a combination of angle steels and PET belts. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1013-1024.	1.3	8
28	Condensation heat transfer of R245fa in tubes with and without lyophilic porous-membrane-tube insert. International Journal of Heat and Mass Transfer, 2015, 88, 261-275.	2.5	25
29	Froude number dominates condensation heat transfer of R245fa in tubes: Effect of inclination angles. International Journal of Multiphase Flow, 2015, 71, 98-115.	1.6	50
30	Effect of gravity levels on the flow pattern modulation by the phase separation concept. Computers and Fluids, 2015, 108, 43-56.	1.3	6
31	Significant heat transfer enhancement for R123 condensation by micromembrane cylinder. Science Bulletin, 2014, 59, 3676-3685.	1.7	2
32	Numerical simulation of modulated heat transfer tube in laminar flow regime. International Journal of Thermal Sciences, 2014, 75, 171-183.	2.6	20
33	The phase separation concept condensation heat transfer in horizontal tubes for low-grade energy utilization. Energy, 2014, 69, 787-800.	4.5	24
34	Modulated heat transfer tube with mesh cylinder inserted. International Communications in Heat and Mass Transfer, 2014, 56, 15-24.	2.9	14
35	Modulated flow patterns for vertical upflow by the phase separation concept. Experimental Thermal and Fluid Science, 2014, 52, 297-307.	1.5	9
36	Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface. Applied Energy, 2013, 112, 1283-1290.	5.1	24

JIAN XIE

#	Article	IF	CITATIONS
37	Numerical simulation of the modulated flow pattern for vertical upflows by the phase separation concept. International Journal of Multiphase Flow, 2013, 56, 105-118.	1.6	23
38	Flow pattern modulation in a horizontal tube by the passive phase separation concept. International Journal of Multiphase Flow, 2012, 45, 12-23.	1.6	36
39	The engineering application and development direction of Recycled Concrete. , 2011, , .		0