Jian Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335920/publications.pdf

Version: 2024-02-01

		361296	434063
39	976	20	31
papers	citations	h-index	g-index
39	39	39	602
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Supercritical "boiling―number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes. International Journal of Thermal Sciences, 2019, 136, 254-266.	2.6	112
2	Perspective of Sâ^'CO2 power cycles. Energy, 2019, 186, 115831.	4.5	106
3	Dropwise condensation on superhydrophobic nanostructure surface, Part I: Long-term operation and nanostructure failure. International Journal of Heat and Mass Transfer, 2019, 129, 86-95.	2.5	59
4	The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation. International Journal of Heat and Mass Transfer, 2020, 148, 119080.	2.5	58
5	Froude number dominates condensation heat transfer of R245fa in tubes: Effect of inclination angles. International Journal of Multiphase Flow, 2015, 71, 98-115.	1.6	50
6	Mode selection between sliding and rolling for droplet on inclined surface: Effect of surface wettability. International Journal of Heat and Mass Transfer, 2018, 122, 45-58.	2.5	46
7	Critical supercritical-boiling-number to determine the onset of heat transfer deterioration for supercritical fluids. Solar Energy, 2020, 195, 27-36.	2.9	39
8	Dropwise condensation on superhydrophobic nanostructure surface, part II: Mathematical model. International Journal of Heat and Mass Transfer, 2018, 127, 1170-1187.	2.5	38
9	Water drop impacts on a single-layer of mesh screen membrane: Effect of water hammer pressure and advancing contact angles. Experimental Thermal and Fluid Science, 2017, 82, 83-93.	1.5	37
10	Flow pattern modulation in a horizontal tube by the passive phase separation concept. International Journal of Multiphase Flow, 2012, 45, 12-23.	1.6	36
11	Mixed dropwise-filmwise condensation heat transfer on biphilic surface. International Journal of Heat and Mass Transfer, 2020, 150, 119273.	2.5	29
12	The critical nanofluid concentration as the crossover between changed and unchanged solar-driven droplet evaporation rates. Nano Energy, 2019, 57, 791-803.	8.2	27
13	Convective dropwise condensation heat transfer in mini-channels with biphilic surface. International Journal of Heat and Mass Transfer, 2019, 134, 69-84.	2.5	27
14	Condensation heat transfer of R245fa in tubes with and without lyophilic porous-membrane-tube insert. International Journal of Heat and Mass Transfer, 2015, 88, 261-275.	2.5	25
15	Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface. Applied Energy, 2013, 112, 1283-1290.	5.1	24
16	The phase separation concept condensation heat transfer in horizontal tubes for low-grade energy utilization. Energy, 2014, 69, 787-800.	4.5	24
17	Numerical simulation of the modulated flow pattern for vertical upflows by the phase separation concept. International Journal of Multiphase Flow, 2013, 56, 105-118.	1.6	23
18	The K number, a new analogy criterion number to connect pressure drop and heat transfer of sCO2 in vertical tubes. Applied Thermal Engineering, 2021, 182, 116078.	3.0	23

#	Article	IF	CITATIONS
19	A comprehensive understanding of enhanced condensation heat transfer using phase separation concept. Energy, 2019, 172, 661-674.	4.5	21
20	Numerical simulation of modulated heat transfer tube in laminar flow regime. International Journal of Thermal Sciences, 2014, 75, 171-183.	2.6	20
21	A New Mechanism of Lightâ€Induced Bubble Growth to Propel Microbubble Piston Engine. Small, 2020, 16, e2001548.	5.2	20
22	Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface. International Journal of Heat and Mass Transfer, 2018, 116, 951-968.	2.5	18
23	Coupling Diffusion Welding Technique and Mesh Screen Creates Heterogeneous Metal Surface for Droplets Array. Advanced Materials Interfaces, 2017, 4, 1700684.	1.9	17
24	Modulated heat transfer tube with mesh cylinder inserted. International Communications in Heat and Mass Transfer, 2014, 56, 15-24.	2.9	14
25	Synergetics: The cooperative phenomenon in multi-compressions S-CO2 power cycles. Energy Conversion and Management: X, 2020, 7, 100042.	0.9	10
26	Modulated flow patterns for vertical upflow by the phase separation concept. Experimental Thermal and Fluid Science, 2014, 52, 297-307.	1.5	9
27	Large scale generation of micro-droplet array by vapor condensation on mesh screen piece. Scientific Reports, 2017, 7, 39932.	1.6	9
28	Heat Transfer Prediction of Supercritical Carbon Dioxide in Vertical Tube Based on Artificial Neural Networks. Journal of Thermal Science, 2021, 30, 1751-1767.	0.9	9
29	Experimental study on the flexural behavior of stone beams strengthened with a combination of angle steels and PET belts. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1013-1024.	1.3	8
30	A comprehensive comparison between substrate heating and light heating induced nanofluid droplet evaporations. Applied Thermal Engineering, 2020, 175, 115389.	3.0	8
31	Tests on strengths of steel strand and strandâ€concrete (or cement slurry) bond stress under cryogenic temperatures. Structural Concrete, 2017, 18, 872-882.	1.5	7
32	In-situ phase separation to improve phase change heat transfer performance. Energy, 2021, 230, 120845.	4.5	7
33	Effect of gravity levels on the flow pattern modulation by the phase separation concept. Computers and Fluids, 2015, 108, 43-56.	1.3	6
34	Multiscale Characteristic in Symmetric/Asymmetric Solar-Driven Nanofluid Droplet Evaporation. Langmuir, 2020, 36, 1680-1690.	1.6	5
35	Significant heat transfer enhancement for R123 condensation by micromembrane cylinder. Science Bulletin, 2014, 59, 3676-3685.	1.7	2
36	Analysis of a coal-fired power system integrated with a reheat S-CO2 cycle. Energy Procedia, 2019, 158, 1461-1466.	1.8	2

#	Article	IF	CITATIONS
37	Special Issue dedicated to the 1st International Conference on Supercritical CO2 Power System (ICSCPS 2018). Journal of Thermal Science, 2019, 28, 393-393.	0.9	1
38	The engineering application and development direction of Recycled Concrete., 2011,,.		0
39	Condensation heat transfer deterioration on superhydrophobic surface with dense nanostructures. Journal of Physics: Conference Series, 2022, 2230, 012027.	0.3	0