Wenting Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335876/publications.pdf

Version: 2024-02-01

42 papers

5,128 citations

304743 22 h-index 35 g-index

47 all docs

47 docs citations

47 times ranked

8881 citing authors

#	Article	IF	Citations
1	A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology, 2014, 9, 187-192.	31.5	2,109
2	Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9287-9292.	7.1	1,025
3	Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nature Nanotechnology, 2017, 12, 750-756.	31.5	242
4	Micro- and Nano- Magnetic Particles for Applications in Biosensing. Electroanalysis, 2007, 19, 755-768.	2.9	201
5	Conducting Nanosponge Electroporation for Affordable and High-Efficiency Disinfection of Bacteria and Viruses in Water. Nano Letters, 2013, 13, 4288-4293.	9.1	160
6	Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nature Nanotechnology, 2015, 10, 554-562.	31.5	152
7	Revealing the Cell–Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. ACS Nano, 2017, 11, 8320-8328.	14.6	152
8	Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23143-23151.	7.1	147
9	The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Accounts of Chemical Research, 2018, 51, 1046-1053.	15.6	124
10	Static Electricity Powered Copper Oxide Nanowire Microbicidal Electroporation for Water Disinfection. Nano Letters, 2014, 14, 5603-5608.	9.1	118
11	A nanostructure platform for live-cell manipulation of membrane curvature. Nature Protocols, 2019, 14, 1772-1802.	12.0	78
12	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Letters, 2018, 18, 1130-1138.	9.1	65
13	Tunable Stabilization of Gold Nanoparticles in Aqueous Solutions by Mononucleotides. Langmuir, 2007, 23, 7143-7147.	3.5	63
14	Morphology and property investigation of primary particulate matter particles from different sources. Nano Research, 2018, 11, 3182-3192.	10.4	54
15	Rapid Synthesis of DNA-Functionalized Gold Nanoparticles in Salt Solution Using Mononucleotide-Mediated Conjugation. Bioconjugate Chemistry, 2009, 20, 1218-1222.	3.6	52
16	Tutorial: using nanoneedles for intracellular delivery. Nature Protocols, 2021, 16, 4539-4563.	12.0	47
17	Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. Journal of Biological Chemistry, 2018, 293, 567-578.	3.4	38
18	Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Science Alliance, 2019, 2, e201900343.	2.8	35

#	Article	IF	Citations
19	Transdermal Photothermal-Pharmacotherapy to Remodel Adipose Tissue for Obesity and Metabolic Disorders. ACS Nano, 2022, 16, 1813-1825.	14.6	32
20	A microsystem compatible strategy for viable Escherichia coli detection. Biosensors and Bioelectronics, 2006, 21, 1163-1170.	10.1	30
21	Modeling axial distributions of adsorbent particle size and local voidage in expanded bed. Chemical Engineering Science, 2004, 59, 449-457.	3.8	27
22	Enhancing the Nanomaterial Bio-Interface by Addition of Mesoscale Secondary Features: Crinkling of Carbon Nanotube Films To Create Subcellular Ridges. ACS Nano, 2014, 8, 11958-11965.	14.6	26
23	Nucleotide-Mediated Size Fractionation of Gold Nanoparticles in Aqueous Solutions. Langmuir, 2010, 26, 7405-7409.	3.5	23
24	Tear-Based Aqueous Batteries for Smart Contact Lenses Enabled by Prussian Blue Analogue Nanocomposites. Nano Letters, 2021, 21, 1659-1665.	9.1	22
25	Dual-Functional Lipid Coating for the Nanopillar-Based Capture of Circulating Tumor Cells with High Purity and Efficiency. Langmuir, 2017, 33, 1097-1104.	3.5	21
26	Facile and rapid manipulation of DNA surface density on gold nanoparticles using mononucleotide-mediated conjugation. Chemical Communications, 2010, 46, 1314.	4.1	20
27	In Situ Generation of Zinc Oxide Nanobushes on Microneedles as Antibacterial Coating. SLAS Technology, 2019, 24, 181-187.	1.9	19
28	Comparative Study of Curvature Sensing Mediated by F-BAR and an Intrinsically Disordered Region of FBP17. IScience, 2020, 23, 101712.	4.1	18
29	A subset of flavaglines inhibits KRAS nanoclustering and activation. Journal of Cell Science, 2020, 133,	2.0	10
30	Patterning of Oncogenic Ras Clustering in Live Cells Using Vertically Aligned Nanostructure Arrays. Nano Letters, 2022, 22, 1007-1016.	9.1	7
31	Stainingâ€free gel electrophoresisâ€based multiplex enzyme assay using <scp>DNA</scp> and peptide dualâ€functionalized gold nanoparticles. Electrophoresis, 2012, 33, 1288-1291.	2.4	5
32	Accelerating the Development of Hippocampal Neurons using Nanopillar Structures. Biophysical Journal, 2013, 104, 675a.	0.5	1
33	Vertical Nanopillars as Probes for in Situ Nuclear Mechanotransduction. Biophysical Journal, 2016, 110, 132a.	0.5	1
34	Membrane Curvature Dependent F-Actin Polymerization at Nano-Cell Interface. Biophysical Journal, 2018, 114, 690a.	0.5	1
35	Revealing the heterogeneity in neuroblastoma cells via nanopillar-guided subnuclear deformation. Nanoscale, 2022, , .	5.6	1
36	Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solution. , 2010, , .		О

#	Article	IF	CITATIONS
37	Probing the Mechanical Coupling of the Cell Membrane to the Nucleus with Vertical Nanopillar Arrays. Biophysical Journal, 2013, 104, 546a.	0.5	О
38	Probing the Mechanical Coupling of the Cell Membrane to the Nucleus with Vertical Nanopillar Arrays. Biophysical Journal, 2014, 106, 424a.	0.5	0
39	Nanostructure-Induced Membrane Curvature Recruits Endocytosis Machinary in Living Cells. Biophysical Journal, 2014, 106, 31a.	0.5	O
40	At the Nano-Bio Interface: Probing Live Cells with Nano Sensors. Biophysical Journal, 2014, 106, 225a.	0.5	0
41	Nanoscale Curvatures Modulate Protein Signaling at the Cell Membrane. Biophysical Journal, 2020, 118, 487a.	0.5	O
42	Curvature Sensing Mediated by F-BAR Domain and an Intrinsically Disordered Region of FBP17. Biophysical Journal, 2021, 120, 31a.	0.5	0