Jeremy W Chambers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335779/publications.pdf

Version: 2024-02-01

471509 526287 1,151 29 17 27 g-index citations h-index papers 29 29 29 1948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glutamine Metabolism Is Essential for Human Cytomegalovirus Infection. Journal of Virology, 2010, 84, 1867-1873.	3.4	197
2	Mitochondrial c-Jun N-terminal Kinase (JNK) Signaling Initiates Physiological Changes Resulting in Amplification of Reactive Oxygen Species Generation. Journal of Biological Chemistry, 2011, 286, 16052-16062.	3.4	157
3	Atmospheric Oxygen Inhibits Growth and Differentiation of Marrowâ€Derived Mouse Mesenchymal Stem Cells via a p53â€Dependent Mechanism: Implications for Longâ€Term Culture Expansion. Stem Cells, 2012, 30, 975-987.	3.2	100
4	Inhibition of JNK Mitochondrial Localization and Signaling Is Protective against Ischemia/Reperfusion Injury in Rats. Journal of Biological Chemistry, 2013, 288, 4000-4011.	3.4	67
5	Blocking c-Jun N-terminal Kinase (JNK) Translocation to the Mitochondria Prevents 6-Hydroxydopamine-induced Toxicity in Vitro and in Vivo. Journal of Biological Chemistry, 2013, 288, 1079-1087.	3.4	62
6	Small Molecule c-jun-N-Terminal Kinase Inhibitors Protect Dopaminergic Neurons in a Model of Parkinson's Disease. ACS Chemical Neuroscience, 2011, 2, 198-206.	3.5	61
7	Synthesis, Biological Evaluation, X-ray Structure, and Pharmacokinetics of Aminopyrimidine c-jun-N-terminal Kinase (JNK) Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 419-431.	6.4	58
8	Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neuroscience and Therapeutics, 2019, 25, 837-858.	3.9	52
9	The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1. Molecular and Biochemical Parasitology, 2008, 158, 202-207.	1.1	49
10	Analysis of Chemotherapeutic Drug Delivery at the Single Cell Level Using 3D-MSI-TOF-SIMS. Journal of the American Society for Mass Spectrometry, 2016, 27, 2033-2040.	2.8	43
11	Selective Inhibition of Mitochondrial JNK Signaling Achieved Using Peptide Mimicry of the Sab Kinase Interacting Motif-1 (KIM1). ACS Chemical Biology, 2011, 6, 808-818.	3.4	40
12	Activity of a Second Trypanosoma brucei Hexokinase Is Controlled by an 18-Amino-Acid C-Terminal Tail. Eukaryotic Cell, 2006, 5, 2014-2023.	3.4	38
13	Assembly of Heterohexameric Trypanosome Hexokinases Reveals That Hexokinase 2 Is a Regulable Enzyme. Journal of Biological Chemistry, 2008, 283, 14963-14970.	3.4	33
14	Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Experimental Parasitology, 2011, 127, 423-428.	1.2	28
15	A rapid and sensitive high-throughput screening method to identify compounds targeting protein–nucleic acids interactions. Nucleic Acids Research, 2015, 43, e52-e52.	14.5	28
16	Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology, 2017, 382, 24-35.	4.2	26
17	A Small Molecule Bidentate-Binding Dual Inhibitor Probe of the LRRK2 and JNK Kinases. ACS Chemical Biology, 2013, 8, 1747-1754.	3.4	17
18	A Novel Interaction of Translocator Protein 18ÂkDa (TSPO) with NADPH Oxidase in Microglia. Molecular Neurobiology, 2020, 57, 4467-4487.	4.0	17

#	Article	lF	CITATIONS
19	Fluorescently labeled circular DNA molecules for DNA topology and topoisomerases. Scientific Reports, 2016, 6, 36006.	3.3	13
20	A trivalent approach for determining <i>in vitro</i> toxicology: Examination of oxime KO27. Journal of Applied Toxicology, 2015, 35, 219-227.	2.8	11
21	Kinetic Study of DNA Topoisomerases by Supercoiling-Dependent Fluorescence Quenching. ACS Omega, 2019, 4, 18413-18422.	3.5	10
22	Sub-chronic administration of LY294002 sensitizes cervical cancer cells to chemotherapy by enhancing mitochondrial JNK signaling. Biochemical and Biophysical Research Communications, 2015, 463, 538-544.	2.1	9
23	Sab concentrations indicate chemotherapeutic susceptibility in ovarian cancer cell lines. Biochemical Journal, 2018, 475, 3471-3492.	3.7	9
24	Simultaneous Ca ²⁺ Imaging and Optogenetic Stimulation of Cortical Astrocytes in Adult Murine Brain Slices. Current Protocols in Neuroscience, 2020, 94, e110.	2.6	9
25	Residues in an ATP binding domain influence sugar binding in a trypanosome hexokinase. Biochemical and Biophysical Research Communications, 2008, 365, 420-425.	2.1	6
26	Sab is differentially expressed in the brain and affects neuronal activity. Brain Research, 2017, 1670, 76-85.	2.2	6
27	Tyrosyl-DNA Phosphodiesterase 1 and Topoisomerase I Activities as Predictive Indicators for Glioblastoma Susceptibility to Genotoxic Agents. Cancers, 2019, 11, 1416.	3.7	5
28	STEM-18. THE c-Jun N-TERMINAL KINASE (JNK) IS A CRUCIAL COMPONENT OF MAINTENANCE IN GLIOBLASTOMA STEM-LIKE CELLS Neuro-Oncology, 2018, 20, vi247-vi247.	1.2	0
29	Assessment of Mitochondrial Stress in Neurons: Proximity Ligation Assays to Detect Recruitment of Stress-Responsive Proteins to Mitochondria. Neuromethods, 2019, , 87-118.	0.3	O