Jing Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335512/publications.pdf Version: 2024-02-01

LINC THENC

#	Article	IF	CITATIONS
1	Target-triggered hairpin-free chain-branching growth of DNA dendrimers for contrast-enhanced imaging in living cells by avoiding signal dispersion. Chinese Chemical Letters, 2022, 33, 773-777.	4.8	16
2	Engineering dual-responsive, exosome-surface anchored DNA nanosensor for microenvironment monitoring in vivo. Chemical Communications, 2022, , .	2.2	4
3	A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 245, 118887.	2.0	25
4	Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 9681-9690.	4.0	15
5	Design and Engineering of Hypoxia and Acidic pH Dualâ€Stimuliâ€Responsive Intelligent Fluorescent Nanoprobe for Precise Tumor Imaging. Small, 2021, 17, e2100243.	5.2	44
6	Reductase and Light Programmatical Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of Biomolecules in Subcellular Organelles under Hypoxic Conditions. ACS Applied Materials & Interfaces, 2021, 13, 33894-33904.	4.0	10
7	Visualization of O ₂ /ATP cross-talk in living cells with a smart fluorescent nanoprobe. Chemical Communications, 2021, 57, 7786-7789.	2.2	1
8	Human serum albumin as an intrinsic signal amplification amplifier for ultrasensitive assays of the prostate-specific antigen in human plasma. Chemical Communications, 2020, 56, 1843-1846.	2.2	12
9	Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening. Analytical Chemistry, 2020, 92, 2649-2655.	3.2	78
10	Two-Photon Excitation/Red Emission, Ratiometric Fluorescent Nanoprobe for Intracellular pH Imaging. Analytical Chemistry, 2020, 92, 583-587.	3.2	34
11	Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. TrAC - Trends in Analytical Chemistry, 2020, 131, 116010.	5.8	17
12	Catalytic Hairpin Self-Assembly-Based SERS Sensor Array for the Simultaneous Measurement of Multiple Cancer-Associated miRNAs. ACS Sensors, 2020, 5, 4009-4016.	4.0	57
13	<i>In Vivo</i> Imaging of Hypoxia Associated with Inflammatory Bowel Disease by a Cytoplasmic Protein-Powered Fluorescence Cascade Amplifier. Analytical Chemistry, 2020, 92, 5787-5794.	3.2	26
14	Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2020, 125, 115811.	5.8	33
15	Upconversion Nanoprobes for in Vitro and ex Vivo Measurement of Carbon Monoxide. ACS Applied Materials & Interfaces, 2019, 11, 26684-26689.	4.0	22
16	Azoreductase-Responsive Metal–Organic Framework-Based Nanodrug for Enhanced Cancer Therapy via Breaking Hypoxia-induced Chemoresistance. ACS Applied Materials & Interfaces, 2019, 11, 25740-25749.	4.0	52
17	Inâ€Situ Amplificationâ€Based Imaging of RNA in Living Cells. Angewandte Chemie - International Edition, 2019, 58, 11574-11585.	7.2	170
18	Real-Time Visualizing Mitophagy-Specific Viscosity Dynamic by Mitochondria-Anchored Molecular Rotor. Analytical Chemistry, 2019, 91, 8574-8581.	3.2	75

JING ZHENG

#	Article	IF	CITATIONS
19	Inâ€Situ Amplificationâ€Based Imaging of RNA in Living Cells. Angewandte Chemie, 2019, 131, 11698-11709.	1.6	46
20	A spherical nucleic acid-based two-photon nanoprobe for RNase H activity assay in living cells and tissues. Nanoscale, 2019, 11, 8133-8137.	2.8	12
21	Oligonucleotide Cross-Linked Hydrogel for Recognition and Quantitation of MicroRNAs Based on a Portable Glucometer Readout. ACS Applied Materials & Interfaces, 2019, 11, 7792-7799.	4.0	50
22	Highly selective imaging of lysosomal azoreductase under hypoxia using pH-regulated and target-activated fluorescent nanoprobes. Chemical Communications, 2019, 55, 3235-3238.	2.2	26
23	A fluorescent nanoprobe based on azoreductase-responsive metal–organic frameworks for imaging VEGF mRNA under hypoxic conditions. Analyst, The, 2019, 144, 6254-6261.	1.7	22
24	Triplex-Functionalized DNA Tetrahedral Nanoprobe for Imaging of Intracellular pH and Tumor-Related Messenger RNA. Analytical Chemistry, 2019, 91, 15599-15607.	3.2	42
25	Azoreductase-Responsive Nanoprobe for Hypoxia-Induced Mitophagy Imaging. Analytical Chemistry, 2019, 91, 1360-1367.	3.2	59
26	Azoreductase and Target Simultaneously Activated Fluorescent Monitoring for Cytochrome c Release under Hypoxia. Analytical Chemistry, 2018, 90, 5865-5872.	3.2	37
27	Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosensors and Bioelectronics, 2018, 101, 167-173.	5.3	141
28	Visualizing Endogenous Sulfur Dioxide Derivatives in Febrile-Seizure-Induced Hippocampal Damage by a Two-Photon Energy Transfer Cassette. Analytical Chemistry, 2018, 90, 14514-14520.	3.2	48
29	"Trojan Horse―DNA Nanostructure for Personalized Theranostics: Can It Knock on the Door of Preclinical Practice?. Langmuir, 2018, 34, 15028-15044.	1.6	8
30	A Ratiometric Two-Photon Fluorescent Cysteine Probe with Well-Resolved Dual Emissions Based on Intramolecular Charge Transfer-Mediated Two-Photon-FRET Integration Mechanism. ACS Sensors, 2018, 3, 2415-2422.	4.0	81
31	Hypoxia-triggered gene therapy: a new drug delivery system to utilize photodynamic-induced hypoxia for synergistic cancer therapy. Journal of Materials Chemistry B, 2018, 6, 6424-6430.	2.9	27
32	Programmable DNA triple-helix molecular switch in biosensing applications: from in homogenous solutions to in living cells. Chemical Communications, 2017, 53, 2507-2510.	2.2	25
33	Peptide-fluorophore/AuNP conjugate-based two-photon excited fluorescent nanosensor for caspase-3 activity imaging assay in living cells and tissue. MedChemComm, 2017, 8, 1435-1439.	3.5	9
34	Ratiometric Visualization of NO/H ₂ S Cross-Talk in Living Cells and Tissues Using a Nitroxyl-Responsive Two-Photon Fluorescence Probe. Analytical Chemistry, 2017, 89, 4587-4594.	3.2	92
35	Noninvasive and Highly Selective Monitoring of Intracellular Glucose via a Two-Step Recognition-Based Nanokit. Analytical Chemistry, 2017, 89, 8319-8327.	3.2	18
36	Technologies for analysis of circulating tumour DNA: Progress and promise. TrAC - Trends in Analytical Chemistry, 2017, 97, 36-49.	5.8	20

JING ZHENG

#	Article	IF	CITATIONS
37	Detection of Circulating Tumor DNA in Human Blood via DNA-Mediated Surface-Enhanced Raman Spectroscopy of Single-Walled Carbon Nanotubes. Analytical Chemistry, 2016, 88, 4759-4765.	3.2	98
38	Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Analytical Chemistry, 2016, 88, 4833-4840.	3.2	77
39	SERS monitoring the dynamics of local pH in lysosome of living cells during photothermal therapy. Analyst, The, 2016, 141, 3224-3227.	1.7	26
40	Visual Biopsy by Hydrogen Peroxide-Induced Signal Amplification. Analytical Chemistry, 2016, 88, 10728-10735.	3.2	14
41	Direct Fluorescent Detection of Blood Potassium by Ion-Selective Formation of Intermolecular G-Quadruplex and Ligand Binding. Analytical Chemistry, 2016, 88, 9285-9292.	3.2	63
42	A Reversible Nanolamp for Instantaneous Monitoring of Cyanide Based on an Elsner-Like Reaction. Analytical Chemistry, 2016, 88, 9759-9765.	3.2	26
43	A TP-FRET-based two-photon fluorescent probe for ratiometric visualization of endogenous sulfur dioxide derivatives in mitochondria of living cells and tissues. Chemical Communications, 2016, 52, 10289-10292.	2.2	110
44	Quantitative Monitoring of Hypoxia-Induced Intracellular Acidification in Lung Tumor Cells and Tissues Using Activatable Surface-Enhanced Raman Scattering Nanoprobes. Analytical Chemistry, 2016, 88, 11852-11859.	3.2	29
45	A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chemical Communications, 2016, 52, 8553-8556.	2.2	85
46	<i>In Vivo</i> Lighted Fluorescence <i>via</i> Fenton Reaction: Approach for Imaging of Hydrogen Peroxide in Living Systems. Analytical Chemistry, 2016, 88, 3998-4003.	3.2	45
47	SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosensors and Bioelectronics, 2016, 77, 673-680.	5.3	53
48	Engineering a nanolab for the determination of lysosomal nitric oxide by the rational design of a pH-activatable fluorescent probe. Chemical Science, 2016, 7, 1920-1925.	3.7	43
49	Aptamers Selected by Cell-SELEX for Molecular Imaging. Journal of Molecular Evolution, 2015, 81, 162-171.	0.8	17
50	Hemicyanine-based High Resolution Ratiometric near-Infrared Fluorescent Probe for Monitoring pH Changes in Vivo. Analytical Chemistry, 2015, 87, 2495-2503.	3.2	215
51	Silver Nanoparticle Gated, Mesoporous Silica Coated Gold Nanorods (AuNR@MS@AgNPs): Low Premature Release and Multifunctional Cancer Theranostic Platform. ACS Applied Materials & Interfaces, 2015, 7, 6211-6219.	4.0	92
52	DNA-templated in situ growth of AgNPs on SWNTs: a new approach for highly sensitive SERS assay of microRNA. Chemical Communications, 2015, 51, 6552-6555.	2.2	44
53	Sensitive and rapid detection of endogenous hydrogen sulï¬de distributing in different mouse viscera via a two-photon fluorescent probe. Analytica Chimica Acta, 2015, 896, 128-136.	2.6	29
54	Targeted Intracellular Controlled Drug Delivery and Tumor Therapy through in Situ Forming Ag Nanogates on Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 2015, 7, 11930-11938.	4.0	44

JING ZHENG

#	Article	IF	CITATIONS
55	Rationally designed molecular beacons for bioanalytical and biomedical applications. Chemical Society Reviews, 2015, 44, 3036-3055.	18.7	306
56	DNA-templated in situ growth of silver nanoparticles on mesoporous silica nanospheres for smart intracellular GSH-controlled release. Chemical Communications, 2015, 51, 6544-6547.	2.2	24
57	Two-Photon Sensing and Imaging of Endogenous Biological Cyanide in Plant Tissues Using Graphene Quantum Dot/Gold Nanoparticle Conjugate. ACS Applied Materials & Interfaces, 2015, 7, 19509-19515.	4.0	59
58	A new enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum. Chemical Communications, 2015, 51, 16271-16274.	2.2	62
59	Remote-Controlled Release of DNA in Living Cells via Simultaneous Light and Host–Guest Mediations. Analytical Chemistry, 2014, 86, 10208-10214.	3.2	22
60	Design of multiplex logic gates: Combining regulation of DNA structure with logical calculation. Science China Chemistry, 2014, 57, 453-458.	4.2	2
61	Colorimetric detection of ATP with DNAzyme: design an activatable hairpin probe for reducing background signals and improving selectivity. Analytical Methods, 2014, 6, 3219-3222.	1.3	5
62	A new strategy for fluorometric detection of ascorbic acid based on hydrolysis and redox reaction. RSC Advances, 2014, 4, 35112.	1.7	17
63	Universal Surface-Enhanced Raman Scattering Amplification Detector for Ultrasensitive Detection of Multiple Target Analytes. Analytical Chemistry, 2014, 86, 2205-2212.	3.2	103
64	Design of a Simultaneous Target and Location-Activatable Fluorescent Probe for Visualizing Hydrogen Sulfide in Lysosomes. Analytical Chemistry, 2014, 86, 7508-7515.	3.2	134
65	Goldâ€Coated Fe ₃ O ₄ Nanoroses with Five Unique Functions for Cancer Cell Targeting, Imaging, and Therapy. Advanced Functional Materials, 2014, 24, 1772-1780.	7.8	172
66	Two-Photon Graphene Oxide/Aptamer Nanosensing Conjugate for <i>In Vitro</i> or <i>In Vivo</i> Molecular Probing. Analytical Chemistry, 2014, 86, 3548-3554.	3.2	101
67	A Spherical Nucleic Acid Platform Based on Self-Assembled DNA Biopolymer for High-Performance Cancer Therapy. ACS Nano, 2013, 7, 6545-6554.	7.3	91
68	Time-resolved fluorescent detection of Hg2+ in a complex environment by conjugating magnetic nanoparticles with a triple-helix molecular switch. Chemical Communications, 2013, 49, 6915.	2.2	48
69	Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7998-8003.	3.3	495
70	Fabricating a Reversible and Regenerable Raman-Active Substrate with a Biomolecule-Controlled DNA Nanomachine. Journal of the American Chemical Society, 2012, 134, 19957-19960.	6.6	110
71	Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch. Analytical Chemistry, 2011, 83, 6586-6592.	3.2	161
72	Modulating Molecular Level Space Proximity: A Simple and Efficient Strategy to Design Structured DNA Probes. Analytical Chemistry, 2010, 82, 3914-3921.	3.2	29

#	Article	IF	CITATIONS
73	Noncovalent Assembly of Carbon Nanotubes and Single-Stranded DNA: An Effective Sensing Platform for Probing Biomolecular Interactions. Analytical Chemistry, 2008, 80, 7408-7413.	3.2	303