
Xixiun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335444/publications.pdf Version: 2024-02-01

Χινιιίνι Υιι

#	Article	IF	CITATIONS
1	Preparation, characterization, and feasibility study of Sr/Zn-doped CPP/GNS/UHMWPE composites as an artificial joint component with enhanced hardness, impact strength, tribological and biological performance. RSC Advances, 2021, 11, 21991-21999.	3.6	2
2	Feasibility study of oxidized hyaluronic acid cross-linking acellular bovine pericardium with potential application for abdominal wall repair. International Journal of Biological Macromolecules, 2021, 184, 831-842.	7.5	12
3	Dialdehyde pectin-crosslinked and hirudin-loaded decellularized porcine pericardium with improved matrix stability, enhanced anti-calcification and anticoagulant for bioprosthetic heart valves. Biomaterials Science, 2021, 9, 7617-7635.	5.4	15
4	Bioinspired, Artificial, Small-Diameter Vascular Grafts with Selective and Rapid Endothelialization Based on an Amniotic Membrane-Derived Hydrogel. ACS Biomaterials Science and Engineering, 2020, 6, 1603-1613.	5.2	19
5	Development and characterization of bladder acellular matrix cross-linked by dialdehyde carboxymethyl cellulose for bladder tissue engineering. RSC Advances, 2019, 9, 42000-42009.	3.6	13
6	Introducing copper and collagen (<i>via</i> poly(DOPA)) coating to activate inert ceramic scaffolds for excellent angiogenic and osteogenic capacity. RSC Advances, 2018, 8, 15575-15586.	3.6	6
7	Preparation and investigation of novel SrCl2/DCMC-modified (via DOPA) decellularized arteries with excellent physicochemical properties and cytocompatibility for vascular scaffolds. RSC Advances, 2018, 8, 30098-30105.	3.6	1
8	Biocompatibility and anti-calcification of a biological artery immobilized with naturally-occurring phytic acid as the crosslinking agent. Journal of Materials Chemistry B, 2017, 5, 8115-8124.	5.8	21
9	Preparation, characterization, bioactivity and degradation behavior in vitro of copper-doped calcium polyphosphate as a candidate material forÂbone tissue engineering. RSC Advances, 2017, 7, 42614-42626.	3.6	15
10	A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. International Journal of Biological Macromolecules, 2017, 104, 969-978.	7.5	122
11	In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds. International Journal of Biological Macromolecules, 2016, 93, 1583-1590.	7.5	7
12	Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Biomaterials Science, 2016, 4, 678-688.	5.4	56
13	Effects of pH on the alginate dialdehyde (ADA)-crosslinking of natural biological tissues and in vitro study of the endothelial cell compatibility of ADA-crosslinked biological tissues. RSC Advances, 2016, 6, 24527-24535.	3.6	3
14	Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening. Materials Science and Engineering C, 2016, 61, 526-533.	7.3	21
15	Crosslinking effect of dialdehyde starch (DAS) on decellularized porcine aortas for tissue engineering. International Journal of Biological Macromolecules, 2015, 79, 813-821.	7.5	28
16	Feasibility study of the naturally occurring dialdehyde carboxymethyl cellulose for biological tissue fixation. Carbohydrate Polymers, 2015, 115, 54-61.	10.2	29
17	Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro. Ceramics International, 2014, 40, 6999-7005.	4.8	27
18	In vitro enzymatic degradation of a biological tissue fixed by alginate dialdehyde. Carbohydrate Polymers, 2013, 95, 148-154.	10.2	32

Χιχιαν Υυ

#	Article	IF	CITATIONS
19	In vitro cytocompatibility evaluation of alginate dialdehyde for biological tissue fixation. Carbohydrate Polymers, 2013, 92, 448-454.	10.2	27
20	Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Materials Science and Engineering C, 2013, 33, 274-281.	7.3	50
21	Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering. Biomedical Materials (Bristol), 2012, 7, 065007.	3.3	19
22	Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012, 87, 1589-1595.	10.2	70
23	Biocompatibility of genipin-fixed porcine aorta as a possible esophageal prosthesis. Materials Science and Engineering C, 2011, 31, 1593-1601.	7.3	13
24	Degradation kinetics of calcium polyphosphate bioceramic: an experimental and theoretical study. Materials Research, 2009, 12, 495-501.	1.3	20