Mustafa Ã-zen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335397/publications.pdf

Version: 2024-02-01

304368 360668 1,262 36 22 35 h-index citations g-index papers 36 36 36 2479 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS ONE, 2017, 12, e0179543.	1.1	96
2	Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cellular Oncology (Dordrecht), 2016, 39, 187-193.	2.1	75
3	Overexpression of miR-145–5p Inhibits Proliferation of Prostate Cancer Cells and Reduces SOX2 Expression. Cancer Investigation, 2015, 33, 251-258.	0.6	73
4	Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. Journal of Gene Medicine, 2014, 16, 331-335.	1.4	72
5	miR-1 and miR-133b Are Differentially Expressed in Patients with Recurrent Prostate Cancer. PLoS ONE, 2014, 9, e98675.	1.1	70
6	Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clinical and Experimental Hypertension, 2015, 37, 643-649.	0.5	69
7	Increased Expression and Activity of CDC25C Phosphatase and an Alternatively Spliced Variant in Prostate Cancer. Clinical Cancer Research, 2005, 11, 4701-4706.	3.2	64
8	Characterization of cancer stem-like cells in chordoma. Journal of Neurosurgery, 2012, 116, 810-820.	0.9	60
9	The role of miRNAs in cancer: from pathogenesis to therapeutic implications. Future Oncology, 2014, 10, 1027-1048.	1.1	57
10	MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. Journal of Neuro-Oncology, 2013, 115, 143-151.	1.4	51
11	The altered promoter methylation of oxytocin receptor gene in autism. Journal of Neurogenetics, 2016, 30, 280-284.	0.6	48
12	Differential expression of stem cell markers and ABCG2 in recurrent prostate cancer. Prostate, 2014, 74, 1498-1505.	1.2	46
13	Novel MASP1 mutations are associated with an expanded phenotype in 3MC1 syndrome. Orphanet Journal of Rare Diseases, 2015, 10, 128.	1.2	46
14	Identification of microRNAs differentially expressed in prostatic secretions of patients with prostate cancer. International Journal of Cancer, 2015, 136, 875-879.	2.3	42
15	Role of miR-145 in human laryngeal squamous cell carcinoma. Head and Neck, 2016, 38, 260-266.	0.9	40
16	miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget, 2017, 8, 60243-60256.	0.8	34
17	The role of miR-145 in stem cell characteristics of human laryngeal squamous cell carcinoma Hep-2 cells. Tumor Biology, 2016, 37, 4183-4192.	0.8	33
18	The role of ATPâ€binding cassette transporter genes in the progression of prostate cancer. Prostate, 2016, 76, 434-444.	1.2	29

#	Article	IF	CITATIONS
19	MiR-221 as a pre- and postoperative plasma biomarker for larynx cancer patients. Laryngoscope, 2015, 125, E377-E381.	1.1	27
20	Inhibition of proliferation and survival of melanoma cells by adenoviral-mediated expression of dominant negative fibroblast growth factor receptor. Melanoma Research, 2004, 14, 13-21.	0.6	26
21	Novel <i>POC1A</i> mutation in primordial dwarfism reveals new insights for centriole biogenesis. Human Molecular Genetics, 2015, 24, 5378-5387.	1.4	26
22	MicroRNAs as prognostic markers in prostate cancer. Prostate, 2019, 79, 265-271.	1.2	25
23	A Meta-Analysis: Identification of Common Mir-145 Target Genes that have Similar Behavior in Different GEO Datasets. PLoS ONE, 2016, 11, e0161491.	1.1	23
24	Alpha-B-crystallin expression in human laryngeal squamous cell carcinoma tissues. Head and Neck, 2015, 37, 1344-1348.	0.9	20
25	Poikiloderma with neutropenia: Genotypeâ€ethnic origin correlation, expanding phenotype and literature review. American Journal of Medical Genetics, Part A, 2014, 164, 2535-2540.	0.7	18
26	Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens. BMC Cancer, 2016, 16, 853.	1.1	18
27	Characterization of Stem-Like Cells Directly Isolated from Freshly Resected Laryngeal Squamous Cell Carcinoma Specimens. Current Stem Cell Research and Therapy, 2014, 9, 347-353.	0.6	18
28	Splice site identification in human genome using random forest. Health and Technology, 2017, 7, 141-152.	2.1	13
29	Revealing the functions of novel mutations in <i>RAB3GAP1</i> in Martsolf and Warburg micro syndromes. American Journal of Medical Genetics, Part A, 2019, 179, 579-587.	0.7	10
30	Kallikrein gene family as biomarkers for recurrent prostate cancer. Croatian Medical Journal, 2020, 61, 450-456.	0.2	8
31	Whole-exome sequencing revealed two novel mutations in Usher syndrome. Gene, 2015, 563, 215-218.	1.0	6
32	Revealing the function of a novel splice-site mutation of CHD7 in CHARGE syndrome. Gene, 2016, 576, 776-781.	1.0	6
33	A novel EFNB1 mutation in a patient with craniofrontonasal syndrome and right hallux duplication. Gene, 2013, 527, 675-678.	1.0	5
34	MicroRNA profiling in lymphocytes and serum of tyrosinemia type-l patients. Molecular Biology Reports, 2013, 40, 4619-4623.	1.0	5
35	Report of a family with craniofrontonasal syndrome. Clinical Dysmorphology, 2015, 24, 79-83.	0.1	3
36	MicroRNAs as Essential Components of Non-Coding Genome are Emerging Key Players of Oncogenesis. Molecular Biology (Los Angeles, Calif), 2013, 2, .	0.0	0