Tien-Mo Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5335236/publications.pdf Version: 2024-02-01

Τιένι-Μο Shih

#	Article	IF	CITATIONS
1	Automatic Shimming Method Using Compensation of Magnetic Susceptibilities and Adaptive Simplex for Low-Field NMR. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	4
2	Intangible Hydrodynamic Cloaks for Convective Flows. Physical Review Applied, 2021, 15, .	1.5	16
3	Quasi-Bragg plasmon modes for highly efficient plasmon-enhanced second-harmonic generation at near-ultraviolet frequencies. Optics Express, 2021, 29, 21444.	1.7	3
4	Manipulation of Ultrafast Nonlinear Optical Response Based on Surface Plasmon Resonance. Advanced Optical Materials, 2021, 9, 2100847.	3.6	8
5	Light-Trapped Nanocavities for Ultraviolet Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2021, 125, 17241-17247.	1.5	7
6	Highly Efficient Determination of Complex NMR Multiplet Structures in Inhomogeneous Magnetic Fields. Analytical Chemistry, 2021, 93, 2419-2423.	3.2	3
7	Broadband unidirectional scattering in visible ranges and controllable hot-spot spatial transfer via a single nanoparticle. Applied Surface Science, 2020, 528, 146489.	3.1	10
8	Multiband enhanced second-harmonic generation via plasmon hybridization. Journal of Chemical Physics, 2020, 153, 151102.	1.2	4
9	Competitive Effects of Surface Plasmon Resonances and Interband Transitions on Plasmon-Enhanced Second-Harmonic Generation at Near-Ultraviolet Frequencies. Physical Review Applied, 2020, 13, .	1.5	11
10	Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes. Nanophotonics, 2020, 9, 815-822.	2.9	12
11	Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays. Nanoscale, 2019, 11, 16428-16436.	2.8	12
12	Hydrogen Induced Etching Features of Wrinkled Graphene Domains. Nanomaterials, 2019, 9, 930.	1.9	4
13	Construction of three-dimensional temperature distribution using a network of ultrasonic transducers. Scientific Reports, 2019, 9, 12726.	1.6	5
14	Shape Stability of Metallic Nanoplates: A Molecular Dynamics Study. Nanoscale Research Letters, 2019, 14, 357.	3.1	3
15	SYNTHESES OF LARGE-SIZED SINGLE CRYSTAL GRAPHENE: A REVIEW OF RECENT DEVELOPMENTS. Surface Review and Letters, 2019, 26, 1830007.	0.5	4
16	Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy. Nano Letters, 2018, 18, 2209-2216.	4.5	96
17	Improved semipolar green InGaN/GaN quantum wells on asymmetrically grown (112Ì,,2) GaN templates and their correlations. CrystEngComm, 2018, 20, 2053-2059.	1.3	7
18	Influences of point defects on electrical and optical properties of InGaN light-emitting diodes at cryogenic temperature. Journal of Applied Physics, 2018, 123, 161544.	1.1	3

TIEN-MO SHIH

#	Article	IF	CITATIONS
19	Critical Annealing Temperature for Stacking Orientation of Bilayer Graphene. Small, 2018, 14, e1802498.	5.2	6
20	Plasmoelectric Potential Mapping of a Single Nanoparticle. ACS Photonics, 2018, 5, 3519-3525.	3.2	16
21	Temperatureâ€Related Morphological Evolution of MoS ₂ Domains on Graphene and Electron Transfer within Heterostructures. Small, 2017, 13, 1603549.	5.2	20
22	On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes. AIP Advances, 2017, 7, .	0.6	3
23	Study on color-tunable phosphor-coated white light-emitting diodes with high S/P ratios. AIP Advances, 2016, 6, 035127.	0.6	7
24	Non-synchronization of lattice and carrier temperatures in light-emitting diodes. Scientific Reports, 2016, 6, 19539.	1.6	4
25	Optimization of the cooling characteristics in high-voltage LEDs. Numerical Heat Transfer; Part A: Applications, 2016, 69, 1242-1252.	1.2	2
26	Transient models integrating photovoltaic, electron-tunneling, and thermoelectric mechanisms. Numerical Heat Transfer; Part A: Applications, 2016, 69, 1125-1135.	1.2	1
27	Graphene-Based Fluorescence-Quenching-Related Fermi Level Elevation and Electron-Concentration Surge. Nano Letters, 2016, 16, 5737-5741.	4.5	48
28	Thermal electron-tunneling devices as coolers and amplifiers. Scientific Reports, 2016, 6, 21425.	1.6	18
29	Spectral Optimization of Candle-Like White Light-Emitting Diodes With High Color Rendering Index and Luminous Efficacy. Journal of Display Technology, 2016, 12, 1393-1397.	1.3	10
30	Optimization of cooling effects with fins of variable cross-sections. Numerical Heat Transfer; Part A: Applications, 2016, 69, 850-858.	1.2	8
31	3-D Microlens Phosphor With Curvatures Manufactured by Imprinting for Chip-on-Board Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2016, 63, 1128-1133.	1.6	6
32	Red-Phosphor-Dot-Doped Array in Mirror-Surface Substrate Light-Emitting Diodes. Journal of Display Technology, 2016, 12, 873-877.	1.3	2
33	Optical Degradation Mechanisms of Indium Gallium Nitride-Based White Light Emitting Diodes by High-Temperature Aging Tests. IEEE Transactions on Reliability, 2016, 65, 256-262.	3.5	11
34	Maximal rectification ratios for idealized bi-segment thermal rectifiers. Scientific Reports, 2015, 5, 12677.	1.6	27
35	Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities. Nano Letters, 2015, 15, 6716-6721.	4.5	88
36	Time-Dependent Photovoltaic-Thermoelectric Hybrid Systems. Numerical Heat Transfer; Part A: Applications, 2014, 66, 402-419.	1.2	10

#	Article	IF	CITATIONS
37	Literature Survey of Numerical Heat Transfer (2010–2011). Numerical Heat Transfer; Part A: Applications, 2013, 64, 435-525.	1.2	12
38	Thermal analyses of alternating current light-emitting diodes. Applied Physics Letters, 2013, 103, 153505.	1.5	4