
## Shaoguang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5334971/publications.pdf Version: 2024-02-01



SHAOGUANGLI

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell, 2022, 29, 149-159.e7.                                                   | 11.1 | 49        |
| 2  | An artificial intelligence deep learning platform achieves high diagnostic accuracy for Covid-19 pneumonia by reading chest X-ray images. IScience, 2022, 25, 104031.                                                  | 4.1  | 11        |
| 3  | YBX1 is required for maintaining myeloid leukemia cell survival by regulating <i>BCL2</i> stability in an m6A-dependent manner. Blood, 2021, 138, 71-85.                                                               | 1.4  | 87        |
| 4  | Therapeutic inhibition of Fc <sup>î</sup> 3RIIb signaling targets leukemic stem cells in chronic myeloid leukemia.<br>Leukemia, 2020, 34, 2635-2647.                                                                   | 7.2  | 8         |
| 5  | A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nature Communications, 2020, 11, 6004.                                                             | 12.8 | 51        |
| 6  | Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL<br>Signaling Axis. Cell Stem Cell, 2020, 27, 81-97.e8.                                                                       | 11.1 | 140       |
| 7  | Leukemia Stem Cells in Chronic Myeloid Leukemia. Advances in Experimental Medicine and Biology, 2019,<br>1143, 191-215.                                                                                                | 1.6  | 7         |
| 8  | Prosurvival kinase PIM2 is a therapeutic target for eradication of chronic myeloid leukemia stem<br>cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>10482-10487. | 7.1  | 10        |
| 9  | Concise Review: Exploiting Unique Biological Features of Leukemia Stem Cells for Therapeutic Benefit.<br>Stem Cells Translational Medicine, 2019, 8, 768-774.                                                          | 3.3  | 5         |
| 10 | Good Tolerance and Durable Remission for Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy in<br>Refractory/Relapsed Mantle Cell Lymphoma. Blood, 2019, 134, 2818-2818.                                               | 1.4  | 1         |
| 11 | Activation of JAK2/STAT5 Pathway Reduces Expression Level of DNMT3a in MPN Cell Line. Blood, 2019, 134, 5394-5394.                                                                                                     | 1.4  | 0         |
| 12 | Patients with Bone and Bone Marrow Involvement Had Better OS and PFS in Patients with Aggressive<br>Non-Hodgkin Lymphoma Treated with CD19 CAR T Cells. Blood, 2019, 134, 5315-5315.                                   | 1.4  | 0         |
| 13 | Clinical Presentation, Management and Biomarkers of Cytokine Release Syndrome after Anti-CD19<br>CART-Cell Therapy for r/r ALL. Blood, 2019, 134, 5625-5625.                                                           | 1.4  | 0         |
| 14 | Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine.<br>Blood, 2017, 130, 655-665.                                                                                   | 1.4  | 63        |
| 15 | <i>Alox5</i> Blockade Eradicates <i>JAK2V617F</i> -Induced Polycythemia Vera in Mice. Cancer Research, 2017, 77, 164-174.                                                                                              | 0.9  | 10        |
| 16 | Chronic Myeloid Leukemia (CML) Mouse Model in Translational Research. Methods in Molecular<br>Biology, 2016, 1438, 225-243.                                                                                            | 0.9  | 12        |
| 17 | Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1. Blood, 2016, 127, 1803-1813.                                                                    | 1.4  | 24        |
| 18 | Novel oral transforming growth factorâ€Î² signaling inhibitor <scp>EW</scp> â€7197 eradicates<br><scp>CML</scp> â€initiating cells. Cancer Science, 2016, 107, 140-148.                                                | 3.9  | 28        |

SHAOGUANG LI

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Induction of Chronic Myeloid Leukemia in Mice. Methods in Molecular Biology, 2016, 1465, 17-25.                                                                                 | 0.9  | 4         |
| 20 | Chronic Myelogenous Leukemia– Initiating Cells Require Polycomb Group Protein EZH2. Cancer<br>Discovery, 2016, 6, 1237-1247.                                                    | 9.4  | 72        |
| 21 | Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy.<br>Blood, 2016, 127, 1912-1922.                                          | 1.4  | 15        |
| 22 | Fighting fat in AML. Blood, 2016, 128, 1910-1911.                                                                                                                               | 1.4  | 0         |
| 23 | Survival regulation of leukemia stem cells. Cellular and Molecular Life Sciences, 2016, 73, 1039-1050.                                                                          | 5.4  | 31        |
| 24 | The Src kinases Hck, Fgr, and Lyn activate Abl2/Arg to facilitate IgG-mediated phagocytosis and <i>Leishmania</i> infection. Journal of Cell Science, 2016, 129, 3130-43.       | 2.0  | 18        |
| 25 | Targeting Chronic Myeloid Leukemia Stem Cells through Pharmacological Inhibition of HIF-1α. Blood, 2016, 128, 4235-4235.                                                        | 1.4  | 0         |
| 26 | Inhibition of CML Stem Cells with an Alkaloid That Reduces β-Catenin. Blood, 2016, 128, 1882-1882.                                                                              | 1.4  | 0         |
| 27 | Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood, 2015, 126, 1302-1313.                  | 1.4  | 93        |
| 28 | A therapeutically targetable mechanism of BCR-ABL–independent imatinib resistance in chronic<br>myeloid leukemia. Science Translational Medicine, 2014, 6, 252ra121.            | 12.4 | 105       |
| 29 | Omacetaxine mepesuccinate in the treatment of intractable chronic myeloid leukemia. OncoTargets and Therapy, 2014, 7, 177.                                                      | 2.0  | 14        |
| 30 | Management and orphan drug development for acute myeloid leukemia. Expert Opinion on Orphan<br>Drugs, 2014, 2, 441-451.                                                         | 0.8  | 0         |
| 31 | PKC Pathways Mediate BCR-ABL-Independent Imatinib Resistance in Chronic Myeloid Leukemia. Blood, 2014, 124, 1790-1790.                                                          | 1.4  | 21        |
| 32 | Genetic Depletion of Fc Gamma Receptor 2b Affects CML Stem Cell Biology. Blood, 2014, 124, 4528-4528.                                                                           | 1.4  | 1         |
| 33 | Eradication of Chronic Myelogenous Leukemia By Inactivation of the Polycomb Group Protein EZH2.<br>Blood, 2014, 124, 778-778.                                                   | 1.4  | 1         |
| 34 | Timing of the Loss of Pten Is Critical in Determining the Disease Phenotype in Mice- a Mouse Model for<br>Pediatric Mixed MDS/MPN. Blood, 2014, 124, 3585-3585.                 | 1.4  | 0         |
| 35 | DNA Microarray Assay Helps to Identify Functional Genes Specific for Leukemia Stem Cells. Dataset<br>Papers in Science, 2013, 2013, 1-5.                                        | 1.0  | 1         |
| 36 | PRKD2 Serine-Threonine Kinase, an Essential Effector of Gabp Transcription Factor, Is Required for<br>Development of Chronic Myelogenous Leukemia. Blood, 2012, 120, 1672-1672. | 1.4  | 0         |

SHAOGUANG LI

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nfkb1 Plays a Tumor-Suppressing Role in BCR-ABL-Induced Leukemias. Blood, 2012, 120, 1666-1666.                                                                                   | 1.4 | Ο         |
| 38 | Without GABP Transcription Factor, BCR-ABL Cannot Transform HSCs to Leukemic Stem Cells Nor<br>Induce Chronic Myelogenous Leukemia in Mice. Blood, 2011, 118, 965-965.            | 1.4 | 7         |
| 39 | HIF1α Is Required for Survival Maintenance of Chronic Myeloid Leukemia Stem Cells. Blood, 2011, 118, 449-449.                                                                     | 1.4 | Ο         |
| 40 | The Scd1 Gene Functions as a Tumor Suppressor In Leukemia Stem Cells. Blood, 2010, 116, 201-201.                                                                                  | 1.4 | 3         |
| 41 | The Tumor Suppressor Role of the Msr1 Gene in Cancer Stem Cells of Chronic Myeloid Leukemia<br>Blood, 2009, 114, 188-188.                                                         | 1.4 | 0         |
| 42 | Beta-catenin Is Essential for Survival of Leukemia Stem Cells Insensitive to Kinase Inhibition in Mice with BCR-ABL Induced Chronic Myeloid Leukemia Blood, 2008, 112, 1080-1080. | 1.4 | 0         |
| 43 | Distinct Gab2-Mediated Signaling Pathways Are Essential for Myeloid or Lymphoid Transformation and<br>Leukemogenesis by BCR-ABL. Blood, 2008, 112, 570-570.                       | 1.4 | 0         |