## Nicholas G Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5334683/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain.<br>Molecular Cell, 2022, 82, 90-105.e13.                                                                                       | 4.5 | 4         |
| 2  | Cryo-EM structure of the plant 26S proteasome. Plant Communications, 2022, 3, 100310.                                                                                                                                               | 3.6 | 7         |
| 3  | Functional conservation and divergence of the helixâ€ŧurnâ€helix motif of E2 ubiquitinâ€conjugating<br>enzymes. EMBO Journal, 2022, 41, e108823.                                                                                    | 3.5 | 8         |
| 4  | Examining the mechanistic relationship of <scp>APC</scp> / <scp>C<sup>CDH1</sup></scp> and its interphase inhibitor <scp>EMI1</scp> . Protein Science, 2022, 31, .                                                                  | 3.1 | 4         |
| 5  | Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Frontiers in Cell and Developmental Biology, 2021, 9, 687515.                                                     | 1.8 | 13        |
| 6  | Cyclin F drives proliferation through SCF-dependent degradation of the retinoblastoma-like tumor suppressor p130/RBL2. ELife, 2021, 10, .                                                                                           | 2.8 | 9         |
| 7  | USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2. Science Advances, 2020, 6, .                                                                                                                         | 4.7 | 28        |
| 8  | Ubiquitin chain-elongating enzyme UBE2S activates the RING E3 ligase APC/C for substrate priming.<br>Nature Structural and Molecular Biology, 2020, 27, 550-560.                                                                    | 3.6 | 26        |
| 9  | Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20. Nature Chemical<br>Biology, 2020, 16, 546-555.                                                                                                        | 3.9 | 16        |
| 10 | Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Research, 2020, 48, 9415-9432.                                                                                  | 6.5 | 67        |
| 11 | Quantifying the heterogeneity of macromolecular machines by mass photometry. Nature<br>Communications, 2020, 11, 1772.                                                                                                              | 5.8 | 146       |
| 12 | In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biology, 2020, 18, e3000975.                                                                             | 2.6 | 7         |
| 13 | UBE2S Learns Self-Control. Structure, 2019, 27, 1185-1187.                                                                                                                                                                          | 1.6 | 0         |
| 14 | Protein engineering of a ubiquitin-variant inhibitor of APC/C identifies a cryptic K48 ubiquitin chain<br>binding site. Proceedings of the National Academy of Sciences of the United States of America, 2019,<br>116, 17280-17289. | 3.3 | 22        |
| 15 | Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends in Cell Biology, 2019, 29, 117-134.                                                                                                                       | 3.6 | 101       |
| 16 | Cezanne/ <scp>OTUD</scp> 7B is a cell cycleâ€regulated deubiquitinase that antagonizes the degradation of <scp>APC</scp> /C substrates. EMBO Journal, 2018, 37, .                                                                   | 3.5 | 60        |
| 17 | Mechanism of APC/C <sup>CDC20</sup> activation by mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2570-8.                                                     | 3.3 | 112       |
| 18 | biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2564-9.                              | 3.3 | 263       |

NICHOLAS G BROWN

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation. Molecular Cell, 2016, 63, 593-607.                                                                     | 4.5  | 123       |
| 20 | Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.<br>Cell, 2016, 165, 1440-1453.                                                                                                  | 13.5 | 126       |
| 21 | Measuring APC/C-Dependent Ubiquitylation In Vitro. Methods in Molecular Biology, 2016, 1342, 287-303.                                                                                                                            | 0.4  | 12        |
| 22 | Molecular Basis for the Catalytic Specificity of the CTX-M Extended-Spectrum $\hat{I}^2$ -Lactamases. Biochemistry, 2015, 54, 447-457.                                                                                           | 1.2  | 50        |
| 23 | RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human<br>anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of<br>America, 2015, 112, 5272-5279. | 3.3  | 80        |
| 24 | Structure of an APC3–APC16 Complex: Insights into Assembly of the Anaphase-Promoting<br>Complex/Cyclosome. Journal of Molecular Biology, 2015, 427, 1748-1764.                                                                   | 2.0  | 35        |
| 25 | Role of βâ€lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIPâ€ll. Protein Science, 2014, 23, 1235-1246.                                                          | 3.1  | 13        |
| 26 | Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication. Journal of Virology, 2014, 88, 12866-12881.                                                                                                     | 1.5  | 29        |
| 27 | Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for<br>Ubiquitin Chain Assembly. Molecular Cell, 2014, 56, 246-260.                                                                        | 4.5  | 98        |
| 28 | Electron microscopy structure of human APC/CCDH1–EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nature Structural and Molecular Biology, 2013, 20, 827-835.                                                            | 3.6  | 82        |
| 29 | BLIP-II Is a Highly Potent Inhibitor of Klebsiella pneumoniae Carbapenemase (KPC-2). Antimicrobial<br>Agents and Chemotherapy, 2013, 57, 3398-3401.                                                                              | 1.4  | 13        |
| 30 | Identification of the β-Lactamase Inhibitor Protein-II (BLIP-II) Interface Residues Essential for Binding<br>Affinity and Specificity for Class A β-Lactamases. Journal of Biological Chemistry, 2013, 288, 17156-17166.         | 1.6  | 15        |
| 31 | Characterization of a novel interaction between BLIPâ€II and Staphylococcus aureus PBP2a. FASEB<br>Journal, 2013, 27, 1013.2.                                                                                                    | 0.2  | 0         |
| 32 | Mutagenesis of Zinc Ligand Residue Cys221 Reveals Plasticity in the IMP-1 Metallo-Î <sup>2</sup> -Lactamase Active Site.<br>Antimicrobial Agents and Chemotherapy, 2012, 56, 5667-5677.                                          | 1.4  | 22        |
| 33 | APC15 mediates CDC20 autoubiquitylation by APC/CMCC and disassembly of the mitotic checkpoint complex. Nature Structural and Molecular Biology, 2012, 19, 1116-1123.                                                             | 3.6  | 118       |
| 34 | Deep Sequencing of Systematic Combinatorial Libraries Reveals β-Lactamase Sequence Constraints at<br>High Resolution. Journal of Molecular Biology, 2012, 424, 150-167.                                                          | 2.0  | 76        |
| 35 | Analysis of the Functional Contributions of Asn233 in Metallo-β-Lactamase IMP-1. Antimicrobial Agents and Chemotherapy, 2011, 55, 5696-5702.                                                                                     | 1.4  | 30        |
| 36 | An aminoâ€ŧerminal signal peptide of Vfr protein negatively influences RopBâ€dependent SpeB expression<br>and attenuates virulence in <i>Streptococcus pyogenes</i> . Molecular Microbiology, 2011, 82,<br>1481-1495.            | 1.2  | 32        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Use of periplasmic target protein capture for phage display engineering of tight-binding protein–protein interactions. Protein Engineering, Design and Selection, 2011, 24, 819-828.                    | 1.0 | 4         |
| 38 | Analysis of the Binding Forces Driving the Tight Interactions between β-Lactamase Inhibitory Protein-II<br>(BLIP-II) and Class A β-Lactamases. Journal of Biological Chemistry, 2011, 286, 32723-32735. | 1.6 | 18        |
| 39 | Multiple Global Suppressors of Protein Stability Defects Facilitate the Evolution of Extended-Spectrum TEM β-Lactamases. Journal of Molecular Biology, 2010, 404, 832-846.                              | 2.0 | 71        |
| 40 | Structural and Biochemical Evidence That a TEM-1 β-Lactamase N170G Active Site Mutant Acts via Substrate-assisted Catalysis. Journal of Biological Chemistry, 2009, 284, 33703-33712.                   | 1.6 | 45        |
| 41 | Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEMâ€1<br>βâ€lactamase. Protein Science, 2009, 18, 2080-2089.                                        | 3.1 | 35        |