Ana C Lorena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5334470/publications.pdf

Version: 2024-02-01

331538 302012 1,916 88 21 39 citations h-index g-index papers 97 97 97 1855 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Community-based anomaly detection using spectral graph filtering. Applied Soft Computing Journal, 2022, 118, 108489.	4.1	6
2	Relating instance hardness to classification performance in a dataset: a visual approach. Machine Learning, 2022, 111, 3085-3123.	3.4	8
3	Assessing the data complexity of imbalanced datasets. Information Sciences, 2021, 553, 83-109.	4.0	26
4	A Study of the Correlation of Metafeatures Used for Metalearning. Lecture Notes in Computer Science, 2021, , 471-483.	1.0	1
5	A Multi-Learning Training Approach for Distinguishing Low and High Risk Cancer Patients. IEEE Access, 2021, 9, 115453-115465.	2.6	3
6	Towards Understanding Clustering Problems and Algorithms: An Instance Space Analysis. Algorithms, 2021, 14, 95.	1.2	6
7	An Instance Space Analysis of Regression Problems. ACM Transactions on Knowledge Discovery From Data, 2021, 15, 1-25.	2.5	9
8	How Complex Is Your Classification Problem?. ACM Computing Surveys, 2020, 52, 1-34.	16.1	128
9	Boosting meta-learning with simulated data complexity measures. Intelligent Data Analysis, 2020, 24, 1011-1028.	0.4	8
10	Measuring Instance Hardness Using Data Complexity Measures. Lecture Notes in Computer Science, 2020, , 483-497.	1.0	9
11	Monitoring Night Skies with Deep Learning. Communications in Computer and Information Science, 2020, , 460-468.	0.4	0
12	Exploring Artificial Neural Networks: A Data Complexity Perspective. , 2019, , .		1
13	New label noise injection methods for the evaluation of noise filters. Knowledge-Based Systems, 2019, 163, 693-704.	4.0	24
14	Using complexity measures to determine the structure of directed acyclic graphs in multiclass classification. Applied Soft Computing Journal, 2018, 65, 428-442.	4.1	3
15	Adaptive Biometric Systems using Ensembles. IEEE Intelligent Systems, 2018, 33, 19-28.	4.0	10
16	Data complexity meta-features for regression problems. Machine Learning, 2018, 107, 209-246.	3.4	41
17	Interdisciplinary Data Analysis. New Generation Computing, 2018, 36, 1-3.	2.5	2
18	Classifier Recommendation Using Data Complexity Measures. , 2018, , .		13

#	Article	IF	CITATIONS
19	Using Complexity Measures to Evolve Synthetic Classification Datasets. , 2018, , .		3
20	Gene Essentiality Prediction Using Topological Features From Metabolic Networks. , 2018, , .		4
21	Data Complexity Measures for Imbalanced Classification Tasks. , 2018, , .		18
22	Adaptive algorithms applied to accelerometer biometrics in a data stream context. Intelligent Data Analysis, 2017, 21, 353-370.	0.4	6
23	Feature selection before EEG classification supports the diagnosis of Alzheimer's disease. Clinical Neurophysiology, 2017, 128, 2058-2067.	0.7	51
24	Score normalization applied to adaptive biometric systems. Computers and Security, 2017, 70, 565-580.	4.0	5
25	Complexity Measures Effectiveness in Feature Selection. , 2017, , .		7
26	Feature Selection via Pareto Multi-objective Genetic Algorithms. Applied Artificial Intelligence, 2017, 31, 764-791.	2.0	4
27	GEEK: Grammatical Evolution for Automatically Evolving Kernel Functions. , 2017, , .		4
28	The NoiseFiltersR Package: Label Noise Preprocessing in R. R Journal, 2017, 9, 219.	0.7	11
29	Determining the Structure of Decision Directed Acyclic Graphs for Multiclass Classification Problems. , 2016, , .		3
30	Enhanced template update: Application to keystroke dynamics. Computers and Security, 2016, 60, 134-153.	4.0	15
31	Measuring the complexity of regression problems. , 2016, , .		4
32	Ensembles of label noise filters: a ranking approach. Data Mining and Knowledge Discovery, 2016, 30, 1192-1216.	2.4	25
33	Noise detection in the meta-learning level. Neurocomputing, 2016, 176, 14-25.	3.5	38
34	Emphasizing typing signature in keystroke dynamics using immune algorithms. Applied Soft Computing Journal, 2015, 34, 178-193.	4.1	13
35	Effect of label noise in the complexity of classification problems. Neurocomputing, 2015, 160, 108-119.	3.5	101
36	Ensemble of Adaptive Algorithms for Keystroke Dynamics. , 2015, , .		4

#	Article	IF	Citations
37	On Measuring the Complexity of Classification Problems. Lecture Notes in Computer Science, 2015, , 158-167.	1.0	7
38	Adapting Noise Filters for Ranking. , 2015, , .		2
39	Adaptive approaches for keystroke dynamics. , 2015, , .		11
40	Using the One-vs-One decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems. Knowledge-Based Systems, 2015, 90, 153-164.	4.0	26
41	Adaptive Positive Selection for Keystroke Dynamics. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 80, 277-293.	2.0	8
42	Filter Feature Selection for One-Class Classification. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 80, 227-243.	2.0	31
43	Using Growing Neural Gas in Prototype Generation for Nearest Neighbor Classifiers. Lecture Notes in Computer Science, 2015, , 276-283.	1.0	1
44	Clustering Search Applied to Rank Aggregation. , 2014, , .		2
45	Adaptive Algorithms in Accelerometer Biometrics. , 2014, , .		9
46	Clinician's Road Map to Wavelet EEG as an Alzheimer's disease Biomarker. Clinical EEG and Neuroscience, 2014, 45, 104-112.	0.9	22
47	A systematic review on keystroke dynamics. Journal of the Brazilian Computer Society, 2013, 19, 573-587.	0.8	57
48	A Study on Class Noise Detection and Elimination. , 2012, , .		20
49	Evolutionary neural networks applied to keystroke dynamics: Genetic and immune based., 2012,,.		5
50	Negative Selection with High-Dimensional Support for Keystroke Dynamics., 2012,,.		3
51	Analysis of complexity indices for classification problems: Cancer gene expression data. Neurocomputing, 2012, 75, 33-42.	3.5	48
52	Comparison of Feature Vectors in Keystroke Dynamics. International Journal of Natural Computing Research, 2012, 3, 59-76.	0.5	1
53	Improving Alzheimer's Disease Diagnosis with Machine Learning Techniques. Clinical EEG and Neuroscience, 2011, 42, 160-165.	0.9	106
54	EEG spectro-temporal modulation energy: A new feature for automated diagnosis of Alzheimer's disease., 2011, 2011, 3828-31.		28

#	Article	IF	CITATIONS
55	Does EEG Montage Influence Alzheimer's Disease Electroclinic Diagnosis?. International Journal of Alzheimer's Disease, 2011, 2011, 1-6.	1.1	15
56	Comparing machine learning classifiers in potential distribution modelling. Expert Systems With Applications, 2011, 38, 5268-5275.	4.4	126
57	Multi-objective Genetic Algorithm Evaluation in Feature Selection. Lecture Notes in Computer Science, 2011, , 462-476.	1.0	25
58	Building binary-tree-based multiclass classifiers using separability measures. Neurocomputing, 2010, 73, 2837-2845.	3.5	30
59	Segmentation and Classification of Histological Images - Application of Graph Analysis and Machine Learning Methods. , 2010, , .		5
60	A Survey on Recommender Systems for News Data. Studies in Computational Intelligence, 2010, , 129-151.	0.7	16
61	Use of Multiobjective Genetic Algorithms in Feature Selection. , 2010, , .		6
62	Complexity measures of supervised classifications tasks: A case study for cancer gene expression data. , 2010, , .		11
63	On the Complexity of Gene Marker Selection. , 2010, , .		2
64	EVALUATION FUNCTIONS FOR THE EVOLUTIONARY DESIGN OF MULTICLASS SUPPORT VECTOR MACHINES. International Journal of Computational Intelligence and Applications, 2009, 08, 53-68.	0.6	4
65	Pre-processing for noise detection in gene expression classification data. Journal of the Brazilian Computer Society, 2009, 15, 3-11.	0.8	33
66	Use of Classification Algorithms in Noise Detection and Elimination. Lecture Notes in Computer Science, 2009, , 417-424.	1.0	51
67	Using Supervised Complexity Measures in the Analysis of Cancer Gene Expression Data Sets. Lecture Notes in Computer Science, 2009, , 48-59.	1.0	5
68	A review on the combination of binary classifiers in multiclass problems. Artificial Intelligence Review, 2008, 30, 19-37.	9.7	224
69	Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing, 2008, 71, 3326-3334.	3.5	117
70	On the Complexity of Gene Expression Classification Data Sets. , 2008, , .		13
71	Tree Decomposition of Multiclass Problems. , 2008, , .		2
72	evolutionary Design of Code-matrices for Multiclass Problems. , 2008, , 153-184.		6

#	Article	IF	CITATIONS
73	Investigation of Strategies for the Generation of Multiclass Support Vector Machines. Studies in Computational Intelligence, 2008, , 319-328.	0.7	2
74	Top-Down Hierarchical Ensembles of Classifiers for Predicting G-Protein-Coupled-Receptor Functions. Lecture Notes in Computer Science, 2008, , 35-46.	1.0	16
75	Estratégias para a Combinação de Classificadores Binários em Soluções Multiclasses. Revista De Informatica Teorica E Aplicada, 2008, 15, 65-86.	0.2	3
76	Potential Distribution Modelling Using Machine Learning. Lecture Notes in Computer Science, 2008, , 255-264.	1.0	3
77	Comparing Several Evaluation Functions in the Evolutionary Design of Multiclass Support Vector Machines. , 2007, , .		0
78	Protein cellular localization prediction with Support Vector Machines and Decision Trees. Computers in Biology and Medicine, 2007, 37, 115-125.	3.9	35
79	Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees. , 2007, , 126-137.		26
80	Uma Introdução Ãs Support Vector Machines. Revista De Informatica Teorica E Aplicada, 2007, 14, 43-67.	0.2	25
81	Multiclass SVM Design and Parameter Selection with Genetic Algorithms. , 2006, , .		8
82	Support vector machines applied to white blood cell recognition. , 2005, , .		23
83	Evaluation of noise reduction techniques in the splice junction recognition problem. Genetics and Molecular Biology, 2004, 27, 665-672.	0.6	25
84	Comparing Techniques for Multiclass Classification Using Binary SVM Predictors. Lecture Notes in Computer Science, 2004, , 272-281.	1.0	7
85	An Hybrid GA/SVM Approach for Multiclass Classification with Directed Acyclic Graphs. Lecture Notes in Computer Science, 2004, , 366-375.	1.0	5
86	The influence of noisy patterns on the performance of learning methods in the splice junction recognition problem. , 0, , .		4
87	Deep Transfer Learning for Meteor Detection. , 0, , .		3
88	METEOR DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORKS., 0,,.		2