List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/533434/publications.pdf Version: 2024-02-01

FDICIKDEMED

#	Article	IF	CITATIONS
1	Mapping of DNA Instability at the Fragile X to a Trinucleotide Repeat Sequence P(CCG) <i>n</i> . Science, 1991, 252, 1711-1714.	12.6	908
2	Fragile X Genotype Characterized by an Unstable Region of DNA. Science, 1991, 252, 1179-1181.	12.6	791
3	Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 2015, 162, 622-634.	28.9	777
4	Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 2015, 524, 88-92.	27.8	601
5	Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nature Neuroscience, 2017, 20, 1602-1611.	14.8	246
6	Canine Adenovirus Vectors: an Alternative for Adenovirus-Mediated Gene Transfer. Journal of Virology, 2000, 74, 505-512.	3.4	239
7	Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB Journal, 2001, 15, 1-23.	0.5	221
8	Evidence of founder chromosomes in fragile X syndrome. Nature Genetics, 1992, 1, 257-260.	21.4	197
9	Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8858-8863.	7.1	196
10	Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife, 2017, 6, .	6.0	178
11	Activation of a dendritic cell–T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. Journal of Experimental Medicine, 2008, 205, 2717-2725.	8.5	153
12	A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nature Reviews Microbiology, 2010, 8, 645-655.	28.6	153
13	Fragile-X syndrome: unique genetics of the heritable unstable element. American Journal of Human Genetics, 1992, 50, 968-80.	6.2	153
14	Implications of <i>FRA16A</i> Structure for the Mechanism of Chromosomal Fragile Site Genesis. Science, 1994, 264, 1938-1941.	12.6	147
15	Fragile X syndrome: genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site Journal of Medical Genetics, 1991, 28, 818-823.	3.2	131
16	Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Science Advances, 2020, 6, eaaz4232.	10.3	124
17	The Cell Adhesion Molecule "CAR―and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution. PLoS Pathogens, 2009, 5, e1000277.	4.7	112
18	A review of 65 years of human adenovirus seroprevalence. Expert Review of Vaccines, 2019, 18, 597-613.	4.4	111

#	Article	IF	CITATIONS
19	Canine Adenovirus Type 2 Attachment and Internalization: Coxsackievirus-Adenovirus Receptor, Alternative Receptors, and an RGD-Independent Pathway. Journal of Virology, 2000, 74, 10639-10649.	3.4	109
20	CAR-Associated Vesicular Transport of an Adenovirus in Motor Neuron Axons. PLoS Pathogens, 2009, 5, e1000442.	4.7	105
21	CAV-2—why a canine virus is a neurobiologist's best friend. Current Opinion in Pharmacology, 2015, 24, 86-93.	3.5	104
22	Adenovirus and adeno-associated virus mediated gene transfer. British Medical Bulletin, 1995, 51, 31-44.	6.9	102
23	Longâ€ŧerm in vivo transduction of neurons throughout the rat central nervous system using novel helperâ€dependent CAVâ€2 vectors. FASEB Journal, 2004, 18, 1-20.	0.5	101
24	Prenatal Diagnosis of Fragile X Syndrome by Direct Detection of the Unstable DNA Sequence. New England Journal of Medicine, 1991, 325, 1720-1722.	27.0	99
25	Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Research, 2005, 1061, 88-96.	2.2	96
26	A Capsid-Encoded PPxY-Motif Facilitates Adenovirus Entry. PLoS Pathogens, 2010, 6, e1000808.	4.7	94
27	A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Molecular Therapy, 2003, 7, 163-173.	8.2	93
28	An Update on Canine Adenovirus Type 2 and Its Vectors. Viruses, 2010, 2, 2134-2153.	3.3	93
29	Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nature Structural and Molecular Biology, 2011, 18, 323-327.	8.2	84
30	Structural and Mutational Analysis of Human Ad37 and Canine Adenovirus 2 Fiber Heads in Complex with the D1 Domain of Coxsackie and Adenovirus Receptor. Journal of Biological Chemistry, 2006, 281, 33704-33716.	3.4	81
31	Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector. Brain Research, 2016, 1641, 274-290.	2.2	81
32	A Recombinant E1-Deleted Canine Adenoviral Vector Capable of Transduction and Expression of a Transgene in Human-Derived Cells andIn Vivo. Human Gene Therapy, 1997, 8, 2103-2115.	2.7	79
33	Hereditary unstable DNA: a new explanation for some old genetic questions?. Lancet, The, 1991, 338, 289-292.	13.7	78
34	Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. European Journal of Neuroscience, 2005, 21, 597-610.	2.6	77
35	Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat. ELife, 2018, 7, .	6.0	69
36	Subpallial origin of a population of projecting pioneer neurons during corticogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12468-12473.	7.1	67

#	Article	IF	CITATIONS
37	An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology, 2004, 324, 103-116.	2.4	67
38	Impaired clearance of virus-infected hepatocytes in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology, 2004, 126, 859-872.	1.3	64
39	Three-Dimensional Structure of Canine Adenovirus Serotype 2 Capsid. Journal of Virology, 2008, 82, 3192-3203.	3.4	64
40	Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells. PLoS Pathogens, 2016, 12, e1005871.	4.7	63
41	Frequency, Proliferation, and Activation of Human Memory T Cells Induced by a Nonhuman Adenovirus. Journal of Virology, 2005, 79, 14595-14605.	3.4	61
42	The gene for the human IgA Fc receptor maps to 19q13.4. Human Genetics, 1992, 89, 107-108.	3.8	59
43	In Vivo Neuronal Tracing with GFP-TTC Gene Delivery. Molecular and Cellular Neurosciences, 2002, 20, 627-637.	2.2	59
44	Contrasting Effects of Human, Canine, and Hybrid Adenovirus Vectors on the Phenotypical and Functional Maturation of Human Dendritic Cells: Implications for Clinical Efficacy. Journal of Virology, 2007, 81, 3272-3284.	3.4	52
45	Localization of mRNA for testis-specific histone H1t by in situ hybridization. Experimental Cell Research, 1991, 197, 330-332.	2.6	50
46	Characterization of cis-Acting Sequences Involved in Canine Adenovirus Packaging. Molecular Therapy, 2001, 3, 631-640.	8.2	47
47	Pros and Cons of Adenovirus-Based SARS-CoV-2 Vaccines. Molecular Therapy, 2020, 28, 2303-2304.	8.2	47
48	Prevention of bleomycin-induced pulmonary fibrosis after adenovirus-mediated transfer of the bacterial bleomycin resistance gene Journal of Clinical Investigation, 1997, 99, 608-617.	8.2	47
49	Modeling Human Neural Functionality <i>In Vitro</i> : Three-Dimensional Culture for Dopaminergic Differentiation. Tissue Engineering - Part A, 2015, 21, 654-668.	3.1	44
50	Bioprocess development for canine adenovirus type 2 vectors. Gene Therapy, 2013, 20, 353-360.	4.5	41
51	TrkB-expressing paraventricular hypothalamic neurons suppress appetite through multiple neurocircuits. Nature Communications, 2020, 11, 1729.	12.8	41
52	Generation and genetic modification of 3D cultures of human dopaminergic neurons derived from neural progenitor cells. Methods, 2012, 56, 452-460.	3.8	40
53	Disruption of the Coxsackievirus and Adenovirus Receptor-Homodimeric Interaction Triggers Lipid Microdomain- and Dynamin-dependent Endocytosis and Lysosomal Targeting. Journal of Biological Chemistry, 2014, 289, 680-695.	3.4	40
54	CAR chasing: canine adenovirus vectors–all bite and no bark?. Journal of Gene Medicine, 2004, 6, S139-S151.	2.8	39

#	Article	IF	CITATIONS
55	Corneal Transduction by Intra-Stromal Injection of AAV Vectors In Vivo in the Mouse and Ex Vivo in Human Explants. PLoS ONE, 2012, 7, e35318.	2.5	38
56	CAV-2 Vector Development and Gene Transfer in the Central and Peripheral Nervous Systems. Frontiers in Molecular Neuroscience, 2019, 12, 71.	2.9	37
57	Trafficking and Propagation of Canine Adenovirus Vectors Lacking a Known Integrin-Interacting Motif. Human Gene Therapy, 2001, 12, 1815-1823.	2.7	36
58	DNA/NYVAC Vaccine Regimen Induces HIV-Specific CD4 and CD8 T-Cell Responses in Intestinal Mucosa. Journal of Virology, 2011, 85, 9854-9862.	3.4	35
59	Canine Adenovirus Vectors for Lung-Directed Gene Transfer: Efficacy, Immune Response, and Duration of Transgene Expression Using Helper-Dependent Vectors. Journal of Virology, 2006, 80, 1487-1496.	3.4	34
60	Interactions Between Human Plasma Components and A Xenogenic Adenovirus Vector: Reduced Immunogenicity During Gene Transfer. Molecular Therapy, 2007, 15, 1998-2007.	8.2	32
61	Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells. Gene Therapy, 2006, 13, 440-448.	4.5	31
62	The Ocular Anomalies in a Cystinosis Animal Model Mimic Disease Pathogenesis. Pediatric Research, 2007, 62, 156-162.	2.3	31
63	Isolation of a human DNA sequence which spans the fragile X. American Journal of Human Genetics, 1991, 49, 656-61.	6.2	31
64	Adenovirus Tales: From the Cell Surface to the Nuclear Pore Complex. PLoS Pathogens, 2015, 11, e1004821.	4.7	29
65	Coxsackievirus Adenovirus Receptor Loss Impairs Adult Neurogenesis, Synapse Content, and Hippocampus Plasticity. Journal of Neuroscience, 2016, 36, 9558-9571.	3.6	29
66	Isolation of a genomic clone encoding the rat histone variant, H1d. Gene, 1990, 89, 265-269.	2.2	28
67	Analysis of the promoter for the gene encoding the testis-specific histone H1t in a somatic cell line: evidence for cell-cycle regulation and modulation by distant upstream sequences. Gene, 1992, 110, 167-173.	2.2	28
68	Expression of the Rat Testis-specific Histone H1t Gene in Transgenic Mice. Journal of Biological Chemistry, 1996, 271, 4046-4054.	3.4	28
69	Central Nervous System Delivery of Helper-Dependent Canine Adenovirus Corrects Neuropathology and Behavior in Mucopolysaccharidosis Type VII Mice. Human Gene Therapy, 2014, 25, 199-211.	2.7	26
70	SGSH gene transfer in mucopolysaccharidosis type IIIA mice using canine adenovirus vectors. Molecular Genetics and Metabolism, 2010, 100, 168-175.	1.1	25
71	The Number of Toll-Like Receptor 9-Agonist Motifs in the Adenovirus Genome Correlates with Induction of Dendritic Cell Maturation by Adenovirus Immune Complexes. Journal of Virology, 2012, 86, 6279-6285.	3.4	25
72	Corrective GUSB Transfer to the Canine Mucopolysaccharidosis VII Brain. Molecular Therapy, 2014, 22, 762-773.	8.2	24

#	Article	IF	CITATIONS
73	Humoral immune response to adenovirus induce tolerogenic bystander dendritic cells that promote generation of regulatory T cells. PLoS Pathogens, 2018, 14, e1007127.	4.7	24
74	Exogenous LRRK2G2019S induces parkinsonian-like pathology in a nonhuman primate. JCI Insight, 2018, 3,	5.0	24
75	Adenovirus-based vaccines—a platform for pandemic preparedness against emerging viral pathogens. Molecular Therapy, 2022, 30, 1822-1849.	8.2	24
76	The Conundrum Between Immunological Memory to Adenovirus and Their Use as Vectors in Clinical Gene Therapy. Molecular Biotechnology, 2006, 34, 247-256.	2.4	23
77	Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor. International Review of Cell and Molecular Biology, 2016, 322, 331-362.	3.2	23
78	Canine Adenovirus Type 2 Vector Generation via I-Sce1-Mediated Intracellular Genome Release. PLoS ONE, 2013, 8, e71032.	2.5	23
79	Comparative transductions of breast cancer cells by three DNA viruses. Biochemical and Biophysical Research Communications, 2003, 309, 1011-1016.	2.1	22
80	An adenovirus traffic update: from receptor engagement to the nuclear pore. Future Microbiology, 2011, 6, 179-192.	2.0	22
81	Helper-dependent canine adenovirus vector-mediated transgene expression in a neurodegenerative lysosomal storage disorder. Gene, 2012, 491, 53-57.	2.2	22
82	Adenovirus—Extracellular Protein Interactions and Their Impact on Innate Immune Responses by Human Mononuclear Phagocytes. Viruses, 2020, 12, 1351.	3.3	21
83	Combined Antiapoptotic and Antioxidant Approach to Acute Neuroprotection for Stroke in Hypertensive Rats. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1215-1224.	4.3	20
84	Differentiated Neuroprogenitor Cells Incubated with Human or Canine Adenovirus, or Lentiviral Vectors Have Distinct Transcriptome Profiles. PLoS ONE, 2013, 8, e69808.	2.5	20
85	Cystine accumulation in the CNS results in severe age-related memory deficits. Neurobiology of Aging, 2009, 30, 987-1000.	3.1	19
86	Corrective GUSB transfer to the canine mucopolysaccharidosis VII cornea using a helper-dependent canine adenovirus vector. Journal of Controlled Release, 2014, 181, 22-31.	9.9	18
87	Lens cell targetting for gene therapy of prevention of posterior capsule opacification. Gene Therapy, 2006, 13, 1422-1429.	4.5	17
88	A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein. Glycobiology, 2012, 22, 1086-1091.	2.5	17
89	Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups. PLoS ONE, 2015, 10, e0133607.	2.5	17
90	Human Coagulation Factor X-Adenovirus Type 5 Complexes Poorly Stimulate an Innate Immune Response in Human Mononuclear Phagocytes. Journal of Virology, 2015, 89, 2884-2891.	3.4	17

#	Article	IF	CITATIONS
91	Do nonhuman primate or bat adenoviruses pose a risk for human health?. Future Microbiology, 2014, 9, 269-272.	2.0	16
92	Lactoferrin Retargets Human Adenoviruses to TLR4 to Induce an Abortive NLRP3-Associated Pyroptotic Response in Human Phagocytes. Frontiers in Immunology, 2021, 12, 685218.	4.8	16
93	Impact of E1 and Cre on Adenovirus Vector Amplification: Developing MDCK CAV-2-E1 and E1-Cre Transcomplementing Cell Lines. PLoS ONE, 2013, 8, e60342.	2.5	16
94	The Intracellular Domain of the Coxsackievirus and Adenovirus Receptor Differentially Influences Adenovirus Entry. Journal of Virology, 2015, 89, 9417-9426.	3.4	15
95	Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model. Gene Therapy, 2016, 23, 86-94.	4.5	15
96	Lysosomal and network alterations in human mucopolysaccharidosis type VII iPSC-derived neurons. Scientific Reports, 2018, 8, 16644.	3.3	15
97	Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 10.	2.9	14
98	Gene Transfer May Be Preventive But Not Curative for a Lysosomal Transport Disorder. Molecular Therapy, 2008, 16, 1372-1381.	8.2	13
99	Ebola virus vaccine: benefit and risks of adenovirus-based vectors. Expert Review of Vaccines, 2015, 14, 1471-1478.	4.4	13
100	What is the risk of a deadly adenovirus pandemic?. PLoS Pathogens, 2021, 17, e1009814.	4.7	12
101	Location of the Cell Adhesion Molecule "Coxsackievirus and Adenovirus Receptor―in the Adult Mouse Brain. Frontiers in Neuroanatomy, 2020, 14, 28.	1.7	10
102	Adenovirus-α-Defensin Complexes Induce NLRP3-Associated Maturation of Human Phagocytes via Toll-Like Receptor 4 Engagement. Journal of Virology, 2022, 96, jvi0185021.	3.4	9
103	Targeted Transgene Expression in Cholinergic Interneurons in the Monkey Striatum Using Canine Adenovirus Serotype 2 Vectors. Frontiers in Molecular Neuroscience, 2020, 13, 76.	2.9	8
104	Ebola vaccines based on adenovirus vectors and risk of HIV. BMJ, The, 2015, 350, h1307-h1307.	6.0	6
105	Impact of adenovirus life cycle progression on the generation of canine helper-dependent vectors. Gene Therapy, 2015, 22, 40-49.	4.5	6
106	IgG-Complexed Adenoviruses Induce Human Plasmacytoid Dendritic Cell Activation and Apoptosis. Viruses, 2021, 13, 1699.	3.3	6
107	What is CAR doing in the middle of the adult neurogenic road?. Neurogenesis (Austin, Tex), 2017, 4, e1304790.	1.5	5
108	Mutagenesis of hexon "FX―hepatic tropism. Blood, 2009, 114, 929-930.	1.4	3

#	Article	IF	CITATIONS
109	Canine helper-dependent vectors production: implications of Cre activity and co-infection on adenovirus propagation. Scientific Reports, 2015, 5, 9135.	3.3	3
110	Virus induced and associated postâ€ŧranslational modifications. Biology of the Cell, 2012, 104, 119-120.	2.0	2
111	CAV-2-Mediated GFP and LRRK2G2019S Expression in the Macaca fascicularis Brain. Frontiers in Molecular Neuroscience, 2020, 13, 49.	2.9	2
112	Targeting Catecholaminergic Systems in Transgenic Rats With a CAV-2 Vector Harboring a Cre-Dependent DREADD Cassette. Frontiers in Molecular Neuroscience, 2020, 13, 121.	2.9	1
113	Editorial: Tropism, Mapping, Modeling, or Therapy Using Canine Adenovirus Type 2 (CAV-2) Vectors in the CNS. Frontiers in Molecular Neuroscience, 2021, 14, 636476.	2.9	1