Michael Siegrist

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5334065/publications.pdf
Version: 2024-02-01

1 Perception of Hazards:â€fThe Role of Social Trust and Knowledge. Risk Analysis, 2000, 20, 713-720. 2.7 989The Influence of Trust and Perceptions of Risks and Benefits on the Acceptance of Cene Technology.Risk Analysis, 2000, 20, 195-204.
6 The importance of food naturalness for consumers: Results of a systematic review. Trends in Food
Science and Technology, 2017, 67, 44-57.
$7 \quad$ Eating green. Consumersâ $€^{\mathrm{TM}}$ willingness to adopt ecological food consumption behaviors. Appetite, 2011, 57, 674-682.
8 Perception of risk: the influence of general trust, and general confidence. Journal of Risk Research, 2005, 8, 145-156. 2.6 452
$9 \quad \begin{aligned} & \text { Public acceptance of nanotec } \\ & \text { Appetite, 2007, 49, 459-466. }\end{aligned}$ 3.7 437
10 The Role of the Affect and Availability Heuristics in Risk Communication. Risk Analysis, 2006, 26, 631-639. 2.7
11 The psychology of eating insects: A cross-cultural comparison between Germany and China. Food
Quality and Preference, 2015, 44, 148-156. 390Flooding Risks: A Comparison of Lay People's Perceptions and Expert's Assessments in Switzerland. Risk12 Analysis, 2006, 26, 971-979.2.738213 Importance of cooking skills for balanced food choices. Appetite, 2013, 65, 125-131.3.734714 Natural Hazards and Motivation for Mitigation Behavior: People Cannot Predict the Affect Evoked by aSevere Flood. Risk Analysis, 2008, 28, 771-778.

19	Public perception of carbon capture and storage (CCS): A review. Renewable and Sustainable Energy Reviews, 2014, 38, 848-863.	16.4	281
20	Convenience food products. Drivers for consumption. Appetite, 2010, 55, 498-506.	3.7	268
21	The consumerâ $\mathbb{T}^{T M}$ s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Quality and Preference, 2014, 38, 14-23.	4.6	264
22	Consumersâ€ ϵ^{TM} associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 2021, 87, 104063.	4.6	262
23	Laypeople's and Experts' Perception of Nanotechnology Hazards. Risk Analysis, 2007, 27, 59-69.	2.7	261
24	The Role of Public Trust During Pandemics. European Psychologist, 2014, 19, 23-32.	3.1	261
25	Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite, 2008, 51, 283-290.	3.7	252
26	How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster. Risk Analysis, 2013, 33, 333-347.	2.7	237
27	Knowledge as a driver of public perceptions about climate change reassessed. Nature Climate Change, 2016, 6, 759-762.	18.8	226

28 Trust and Risk Perception: A Critical Review of the Literature. Risk Analysis, 2021, 41, 480-490. 2.7 226
A Causal Model Explaining the Perception and Acceptance of Gene Technology1. Journal of Applied
Social Psychology, 1999, 29, 2093-2106.
Consumersấ ${ }^{\mathrm{TM}}$ willingness to buy functional foods. The influence of carrier, benefit and trust. Appetite,
$2008,51,526-529$.
$3.7 \quad 216$

2008, 51, 526-529.
216
31 Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power
stations: Investigating an explanatory model. Energy Policy, 2011, 39, 3621-3629.
8.8

210

Addressing climate change: Determinants of consumers' willingness to act and to support policy
measures. Journal of Environmental Psychology, 2012, 32, 197-207.
5.1

201

Antecedents of food neophobia and its association with eating behavior and food choices. Food
33 Antecedents of food neophobia and its associal
4.6

198

Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Science, 2018,
5.5

198
139, 213-219.
35
Does personality influence eating styles and food choices? Direct and indirect effects. Appetite, 2015,
84, 128-138.
3.7

195

39	Becoming an insectivore: Results of an experiment. Food Quality and Preference, 2016, 51, 118-122.	4.6	176
40	Importance of perceived naturalness for acceptance of food additives and cultured meat. Appetite, 2017, 113, 320-326.	3.7	176
41	Impact of sustainability perception on consumption of organic meat and meat substitutes. Appetite, 2019, 132, 196-202.	3.7	165
42	Effects of the degree of processing of insect ingredients in snacks on expected emotional experiences and willingness to eat. Food Quality and Preference, 2016, 54, 117-127.	4.6	158
43	Ready-meal consumption: associations with weight status and cooking skills. Public Health Nutrition, 2011, 14, 239-245.	2.2	156

44 Better Negative than Positive? Evidence of a Bias for Negative Information about Possible Health
New Information and Social Trust: Asymmetry and Perseverance of Attributions about Hazard
Managers. Risk Analysis, 2002, 22, 359-367.

50 Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power. Energy Policy, 2017, 106, 356-366.
5

The Impact of Trust and Risk Perception on the Acceptance of Measures to Reduce COVIDâ€ 19 Cases. Risk
$55 \quad$ Pathways for advancing pesticide policies. Nature Food, 2020, 1, 535-540. 135

56 European consumer healthiness evaluation of â€ $€^{\sim} F r e e-f r o m a ̂ \notin T M ~ l a b e l l e d ~ f o o d ~ p r o d u c t s . ~ F o o d ~ Q u a l i t y ~ a n d ~$ Preference, 2018, 68, 377-388.
4.6

131

| 57 | Morality Information, Performance Information, and the Distinction Between Trust and
 Confidence<sup $>1</ s u p>$. Journal of Applied Social Psychology, 2006, 36, 383-416. |
| :--- | :--- | :--- |
| 58 | Effect of Risk Communication Formats on Risk Perception Depending on Numeracy. Medical Decision
 Making, 2009, 29, 483-490. |
| 59 | Impact of Knowledge and Misconceptions on Benefit and Risk Perception of CCS. Environmental
 Science \& Technology, 2010, 44, 6557-6562. |
| $60 \quad$Factors Influencing Peopleâ€
 ExMs Acceptance of Gene Technology: The Role of Knowledge, Health | |
| 128 | |

62	Measuring people's knowledge about vaccination: Developing a one-dimensional scale. Vaccine, 2012, 30, 3771-3777.	3.8	115
63	Acceptance of nuclear power: The Fukushima effect. Energy Policy, 2013, 59, 112-119.	8.8	114
64	Snack frequency: associations with healthy and unhealthy food choices. Public Health Nutrition, 2013, 16, 1487-1496.	2.2	112
65	Worlds apart. Consumer acceptance of functional foods and beverages in Germany and China. Appetite, 2015, 92, 87-93.	3.7	112
66	Development and validation of a short, consumer-oriented nutrition knowledge questionnaire. Appetite, 2011, 56, 617-620.	3.7	107
67	Perception of Mobile Phone and Base Station Risks. Risk Analysis, 2005, 25, 1253-1264.	2.7	104

68 Factors influencing changes in sustainability perception of various food behaviors: Results of a longitudinal study. Food Quality and Preference, 2015, 46, 33-39.
4.6

104

69 Consumers' food selection behaviors in three-dimensional (3D) virtual reality. Food Research
International, 2019, 117, 50-59.
$6.2 \quad 104$

Simply adding the word â€œfruitâ€•makes sugar healthier: The misleading effect of symbolic information
3.7 103
on the perceived healthiness of food. Appetite, 2015, 95, 252-261.

Public acceptance of CCS system elements: A conjoint measurement. International Journal of
Greenhouse Gas Control, 2012, 6, 77-83.

Human and Natureâ€€aused Hazards: The Affect Heuristic Causes Biased Decisions. Risk Analysis, 2014, 34,
1482-1494.
73 The Less You Know, the More You Are Afraid ofâ€"A Survey on Risk Perceptions of Investment Products.
Journal of Behavioral Finance, 2011, 12, 9-19.

74 Which front-of-pack nutrition label is the most efficient one? The results of an eye-tracker study. Food Quality and Preference, 2015, 39, 183-190.
75 Risk Assessment of Engineered Nanomaterials: A Survey of Industrial Approaches. Environmental
10.0

Science \& Technology, 2008, 42, 640-646.
91

The role of trust for climate change mitigation and adaptation behaviour: A meta-analysis. Journal of Environmental Psychology, 2020, 69, 101428.

Find the differences and the similarities: Relating perceived benefits, perceived costs and protected
77 values to acceptance of five energy technologies. Journal of Environmental Psychology, 2014, 40,
$5.1 \quad 89$ 117-130.

Fair play in energy policy decisions: Procedural fairness, outcome fairness and acceptance of the decision to rebuild nuclear power plants. Energy Policy, 2012, 46, 292-300.
8.8

88

Trust, Confidence, Procedural Fairness, Outcome Fairness, Moral Conviction, and the Acceptance of
Trust, Confidence, Procedural Fairness, Outcome Fairness, M
GM Field Experiments. Risk Analysis, 2012, 32, 1394-1403.
2.7

87

Investing in stocks: The influence of financial risk attitude and values-related money and stock market attitudes. Journal of Economic Psychology, 2006, 27, 285-303.
2.2

86

81 Does environmental friendliness equal healthiness? Swiss consumersâ€ $€^{\mathrm{TM}}$ perception of protein products. Appetite, 2016, 105, 663-673.

I cooked it myself: Preparing food increases liking and consumption. Food Quality and Preference, 2014, 33, 14-16.
4.6

82

83 How people's food disgust sensitivity shapes their eating and food behaviour. Appetite, 2018, 127, 28-36.
3.7

81

84 Affective Imagery and Acceptance of Replacing Nuclear Power Plants. Risk Analysis, 2012, 32, 464-477.
2.7

80

85 Shared Values, Social Trust, and the Perception of Geographic Cancer Clusters. Risk Analysis, 2001, 21,
$2.7 \quad 77$
1047-1054.

The role of health-related, motivational and sociodemographic aspects in predicting food label use: a
2.2

77
comprehensive study. Public Health Nutrition, 2012, 15, 407-414.
$2.2 \quad 77$

Residentsâ $€^{T M}$ reasons for specialty choice: influence of gender, time, patient and career. Medical
$2.1 \quad 76$
Education, 2010, 44, 595-602.

Quantity and quality of food losses along the Swiss potato supply chain: Stepwise investigation and the influence of quality standards on losses. Waste Management, 2015, 46, 120-132.

Implicit Attitudes Toward Nuclear Power and Mobile Phone Base Stations: Support for the Affect
Heuristic. Risk Analysis, 2006, 26, 1021-1029.

Why have some people changed their attitudes toward nuclear power after the accident in
Fukushima?. Energy Policy, 2014, 69, 356-363.

Brave, health-conscious, and environmentally friendly: Positive impressions of insect food product consumers. Food Quality and Preference, 2018, 68, 64-71.
4.6

Exploring the Triangular Relationship Between Trust, Affect, and Risk Perception: A Review of the
Literature. Risk Management, 2008, 10, 156-167.
2.3

Perception of gene technology, and food risks: results of a survey in Switzerland. Journal of Risk
Research, 2003, 6, 45-60.

On the Relation Between Trust and Fairness in Environmental Risk Management. Risk Analysis, 2008, 28,
1395-1414.

Phthalate Exposure Through Food and Consumersâ ϵ^{TM} Risk Perception of Chemicals in Food. Risk Analysis, 2009, 29, 1170-1181.

Understanding misunderstandings in invasion science: why experts donâ $€^{T M} t$ agree on common concepts andÂriskÂassessments. NeoBiota, 0, 20, 1-30.

Validation of the Global Physical Activity Questionnaire for self-administration in a European context. BMJ Open Sport and Exercise Medicine, 2017, 3, e000206.

Poultry consumers' behaviour, risk perception and knowledge related to campylobacteriosis and
domestic food safety. Food Control, 2014, 44, 166-176.

Taxes, labels, or nudges? Public acceptance of various interventions designed to reduce sugar intake.
Food Policy, 2018, 79, 156-165.

101 Belief in gene technology: The influence of environmental attitudes and gender. Personality and
Individual Differences, 1998, 24, 861-866.

A consumerâ€oriented segmentation study in the Swiss wine market. British Food Journal, 2011, 113,
353-373.
2.9

67

Does better for the environment mean less tasty? Offering more climate-friendly meals is good for the environment and customer satisfaction. Appetite, 2015, 95, 475-483.

How to improve consumers' environmental sustainability judgements of foods. Journal of Cleaner Production, 2018, 198, 564-574.

Lay people's perception of food hazards: Comparing aggregated data and individual data. Appetite, 2006,
47, 324-332.

Worldviews, trust, and risk perceptions shape public acceptance of COVID-19 public health measures.
Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .

107 Guidance on Communication of Uncertainty in Scientific Assessments. EFSA Journal, 2019, 17, e05520.
1.8

63

Risks and nanotechnology: the public is more concerned than experts and industry. Nature
Nanotechnology, 2007, 2, 67-67.

Lay concepts on CCS deployment in Switzerland based on qualitative interviews. International Journal of Greenhouse Gas Control, 2009, 3, 652-657.
4.6

Use Patterns of Leave-on Personal Care Products among Swiss-German Children, Adolescents, and Adults. International Journal of Environmental Research and Public Health, 2013, 10, 2778-2798.

Risk Preference Predictions and Gender Stereotypes. Organizational Behavior and Human Decision
Processes, 2002, 87, 91-102.

Examining the Relationship Between Affect and Implicit Associations: Implications for Risk Perception.
Risk Analysis, 2010, 30, 1116-1128.

114 Organic Tomatoes Versus Canned Beans. Environment and Behavior, 2011, 43, 591-611.
4.7

59

Innovations in consumer research: The virtual food buffet. Food Quality and Preference, 2018, 63, 12-17.

Inner Speech as a Cognitive Process Mediating Self-Consciousness and Inhibiting Self-Deception.
Psychological Reports, 1995, 76, 259-265.

117 Test-Retest Reliability of Different Versions of the Stroop Test. Journal of Psychology:
Interdisciplinary and Applied, 1997, 131, 299-306.

Consumers' climate-impact estimations of different food products. Journal of Cleaner Production,
2018, 172, 1646-1653.

Meat avoidance: motives, alternative proteins and diet quality in a sample of Swiss consumers. Public
119 Health Nutrition, 2019, 22, 2448-2459.
2.2

57

120 The Necessity for Longitudinal Studies in Risk Perception Research. Risk Analysis, 2013, 33, 50-51.
2.7

56

Predictors of risk and benefit perception of carbon capture and storage (CCS) in regions with
different stages of deployment. International Journal of Greenhouse Gas Control, 2014, 25, 23-32.

Public acceptance of the expansion and modification of high-voltage power lines in the context of the energy transition. Energy Policy, 2015, 87, 573-583.
8.8

Relevant drivers of farmersâ̂ $€^{T M}$ decision behavior regarding their adaptation to climate change: a case
123 study of two regions in CÃ'te dâ $\epsilon^{\top M}$ lvoire. Mitigation and Adaptation Strategies for Clobal Change, 2015,
$2.1 \quad 53$
20, 179-199.
Tap versus bottled water consumption: The influence of social norms, affect and image on consumer choice. Appetite, 2018, 121, 138-146.
3.7

53

Acceptance of nanotechnology foods: a conjoint study examining consumers' willingness to buy.
2.9

52

British Food Journal, 2009, 111, 660-668.
 125

Acceptance of nanotechnology in food and food packaging: a path model analysis. Journal of Risk
Research, 2010, 13, 353-365.
Our own country is best: Factors influencing consumersâ $€^{\mathrm{TM}}$ sustainability perceptions of plant-based
foods. Food Quality and Preference, 2017, 60, 165-177.

Effect of Risk Ladder Format on Risk Perception in Highâ€•and Lowâ€Numerate Individuals. Risk Analysis,

The misleading effect of energy efficiency information on perceived energy friendliness of electric
9.3

The misleading effect of energy efficiency information on
goods. Journal of Cleaner Production, 2015, 93, 193-202.
51

130 Money Attitude Typology and Stock Investment. Journal of Behavioral Finance, 2006, 7, 88-96.
1.7

50

134	Trust and Confidence: The Difficulties in Distinguishing the Two Concepts in Research. Risk Analysis, 2010, 30, 1022-1024.

When Evolution Works Against the Future: Disgust's Contributions to the Acceptance of New FoodTechnologies. Risk Analysis, 2019, 39, 1546-1559.
2.7

50

135 Improvement of meal composition by vegetable variety. Public Health Nutrition, 2011, 14, 1357-1363.
2.2

49

Biased perception about gene technology: How perceived naturalness and affect distort benefit
3.7

49
137 Systemic scenarios of nanotechnology: Sustainable governance of emerging technologies. Futures, 2009, 41, 284-300.
$2.5 \quad 48$
Swiss pig farmersx ${ }^{3}$ perception and usage of antibiotics during the fattening period. Livestock Science, 2014, 162, 223-232.1.6

Communicating Low Risk Magnitudes: Incidence Rates Expressed as Frequency Versus Rates Expressed
â€œAs long as it is not irradiatedâ $€ \cdot a ̂ €^{\prime \prime}$ Influencing factors of US consumersâ€ ${ }^{\text {TM }}$ acceptance of food
â€œChemophobiaâ€•Today: Consumersâ€TM Knowledge and Perceptions of Chemicals. Risk Analysis, 2019, 39,

145	Children's and parents' health perception of different soft drinks. British Journal of Nutrition, 2015, 113, 526-535.	2.3	44
146	Desired and Undesired Effects of Energy Labelsâ€"An Eye-Tracking Study. PLoS ONE, 2015, 10, e0134132.	2.5	44
147	Predicting the Future: Review of Public Perception Studies of Nanotechnology. Human and Ecological Risk Assessment (HERA), 2010, 16, 837-846.	3.4	43
148	Does food disgust sensitivity influence eating behaviour? Experimental validation of the Food Disgust Scale. Food Quality and Preference, 2018, 68, 411-414.	4.6	43
149	Does wine label processing fluency influence wine hedonics?. Food Quality and Preference, 2015, 44, 12-16.	4.6	42
150	Public perception of solar radiation management: the impact of information and evoked affect. Journal of Risk Research, 2017, 20, 1292-1307.	2.6	42
151	Nutri-Score, multiple traffic light and incomplete nutrition labelling on food packages: Effects on consumersấ $€^{\mathbb{M}}$ accuracy in identifying healthier snack options. Food Quality and Preference, 2020, 83, 103894.	4.6	42

$$
153 \text { How chemophobia affects public acceptance of pesticide use and biotechnology in agriculture. Food }
$$

$$
\text { Quality and Preference, 2021, 91, } 104197 .
$$

154 Reduced food intake after exposure to subtle weight-related cues. Appetite, 2012, 58, 1109-1112.
3.7

39

$$
\begin{aligned}
& 155 \text { Time for change? Food choices in the transition to cohabitation and parenthood. Public Health } \\
& \text { Nutrition, 2014, 17, 2730-2739. }
\end{aligned}
$$

$2.2 \quad 39$

Aggregate consumer exposure to isothiazolinones via household care and personal care products:
156 Probabilistic modelling and benzisothiazolinone risk assessment. Environment International, 2018, 118,
10.0 245-256.

True colours: Advantages and challenges of virtual reality in a sensory science experiment on the
influence of colour on flavour identification. Food Quality and Preference, 2020, 86, 103998 .

Majority of German citizens, US citizens and climate scientists support policy advocacy by climate
5.2

38

Risk perception of mobile communication: a mental models approach. Journal of Risk Research, 2010, 13,

[^0]| 163 | Successful and unsuccessful restrained eating. Does dispositional self-control matter?. Appetite, 2014, 74, 101-106. | 3.7 | 37 |
| :---: | :---: | :---: | :---: |
| 164 | Consumer segmentation based on Stated environmentally-friendly behavior in the food domain. Sustainable Production and Consumption, 2021, 25, 173-186. | 11.0 | 37 |
| 165 | The use or misuse of three-dimensional graphs to represent lower-dimensional data. Behaviour and Information Technology, 1996, 15, 96-100. | 4.0 | 36 |
| 166 | The Effect of Graphical and Numerical Presentation of Hypothetical Prenatal Diagnosis Results on Risk Perception. Medical Decision Making, 2008, 28, 567-574. | 2.4 | 36 |
| 167 | Recycled and desalinated water: Consumersâ $€^{T M}$ associations, and the influence of affect and disgust on willingness to use. Journal of Environmental Management, 2020, 261, 110217. | 7.8 | 36 |
| 168 | Adolescentsấ ${ }^{\text {TM }}$ perception of the healthiness of snacks. Food Quality and Preference, 2016, 50, 94-101. | 4.6 | 35 |
| 169 | â€œThe Dose Makes the Poisonâ€: Informing Consumers About the Scientific Risk Assessment of Food Additives. Risk Analysis, 2016, 36, 130-144. | 2.7 | 35 |
| 170 | How do people perceive graphical risk communication? The role of subjective numeracy. Journal of Risk Research, 2011, 14, 47-61. | 2.6 | 34 |
| 171 | Fluency of pharmaceutical drug names predicts perceived hazardousness, assumed side effects and willingness to buy. Journal of Health Psychology, 2014, 19, 1241-1249. | 2.3 | 34 |

172 Chemophobia in Europe and reasons for biased risk perceptions. Nature Chemistry, 2019, 11, 1071-1072.
173 The Role of Convictions and Trust for Public Protest Potential in the Case of Carbon Dioxide Capture and Storage (CCS). Human and Ecological Risk Assessment (HERA), 2012, 18, 919-932.
33
174 Consumersâ $€^{T M}$ evaluation of the environmental friendliness, healthiness and naturalness of meat, meat substitutes, and other protein-rich foods. Food Quality and Preference, 2022, 97, 104486.4.633175 Applying the evaluability principle to nutrition table information. How reference information changes3.732people's perception of food products. Appetite, 2009, 52, 505-512.Psychological Resources and Attitudes Toward People With Physical Disabilities. Journal of Applied2.032
176 Social Psychology, 2010, 40, 389-401.1.31995, 81, 1119-1122.

Vitamin and mineral supplement users. Do they have healthy or unhealthy dietary behaviours?. Appetite, 2011, 57, 758-764.

181	Consumersâ $€^{T M}$ practical understanding of healthy food choices: a fake food experiment. British Journal of Nutrition, 2016, 116, 559-566.	2.3	31
182	How should importance of naturalness be measured? A comparison of different scales. Appetite, 2019, 140, 298-304.	3.7	31
183	Acquisition of Cooking Skills and Associations With Healthy Eating in Swiss Adults. Journal of Nutrition Education and Behavior, 2020, 52, 483-491.	0.7	31
184	Sustainable governance of emerging technologiesâ $€$ "Critical constellations in the agent network of nanotechnology. Technology in Society, 2007, 29, 388-406.	9.4	30
185	Are Non-Native Plants Perceived to Be More Risky? Factors Influencing Horticulturists' Risk Perceptions of Ornamental Plant Species. PLoS ONE, 2014, 9, e102121.	2.5	30
186	Consumersâ $€^{\text {TM }}$ Risk Perception of Household Cleaning and Washing Products. Risk Analysis, 2017, 37, 647-660.	2.7	30
187	Women's social eating environment and its associations with dietary behavior and weight management. Appetite, 2017, 110, 86-93.	3.7	30

189 The Food Naturalness Index (FNI): An integrative tool to measure the degree of food naturalness. Trends in Food Science and Technology, 2019, 91, 681-690. 15.1 29
The Power of Association: Its Impact on Willingness to Buy GM Food. Human and Ecological Risk 190 The Power of Association: Its Impact on Wil
3.4 28
191 Natural frequencies and Bayesian reasoning: the impact of formal education and problem context.
Journal of Risk Research, 2011, 14, 1039-1055.
2.6 28
The reliance on symbolically significant behavioral attributes when judging energy consumption $192 \begin{aligned} & \text { The reliance on symbolically significant behavioral attributes when ju } \\ & \text { behaviors. Journal of Environmental Psychology, 2014, 40, 259-272. }\end{aligned}$ 5.1 28
3.7 28
Benefit beliefs about protein supplements: A comparative study of users and non-users. Appetite, 2016,
103, 229-235. 193The application of virtual reality in food consumer behavior research: A systematic review. Trends in15.128Food Science and Technology, 2021, 116, 533-544.The relationship between disgust sensitivity and behaviour: A virtual reality study on food disgust.4.627
195 Food Quality and Preference, 2020, 80, 103833.2.727Support for the Deployment of Climate Engineering: A Comparison of Ten Different Technologies. RiskAnalysis, 2020, 40, 1058-1078.$1.3 \quad 26$
197 Reliability of the Stroop Test with Single-Stimulus Presentation. Perceptual and Motor Skills, 1995, 81,
1295-1298.
199 Perceived risks and benefits of nanotechnology applied to the food and packaging sector in MÃ@xico.
203 Public acceptance of high-voltage power lines: The influence of information provision on undergrounding. Energy Policy, 2018, 112, 305-315.8.826
Peopleâ $€^{\mathrm{TM}}$ s reliance on the affect heuristic may result in a biased perception of gene technology. FoodQuality and Preference, 2016, 54, 137-140.
205 The public's knowledge of mobile communication and its influence on base station siting preferences. Health, Risk and Society, 2010, 12, 231-250.$1.7 \quad 24$
206 The comparability of consumersâ $€^{T M}$ behavior in virtual reality and real life: A validation study of virtualreality based on a ranking task. Food Quality and Preference, 2021, 87, 104071.
207 Comparison of two measures for assessing the volume of food waste in Swiss households. Resources, Conservation and Recycling, 2021, 166, 105295.
209 The association between dispositional self-control and longitudinal changes in eating behaviors, diet quality, and BMI. Psychology and Health, 2016, 31, 1311-1327.
2.2 22
210 Does Iconicity in Pictographs Matter? The Influence of Iconicity and Numeracy on InformationProcessing, Decision Making, and Liking in an Eyeâ€ $\mathrm{T}_{\text {racking Study. Risk Analysis, 2017, 37, 546-556. }}$2.7
22
Risk Prioritization in the Food Domain Using Deliberative and Survey Methods: Differences between 2.7 22
211 Experts and Laypeople. Risk Analysis, 2018, 38, 504-524.
Communication of CCS monitoring activities may not have a reassuring effect on the public. International Journal of Greenhouse Gas Control, 2011, 5, 1674-1679. 4.6 21
212High Numerates Count Icons and Low Numerates Process Large Areas in Pictographs: Results of an2.7Eyeâ€Tracking Study. Risk Analysis, 2016, 36, 1599-1614.Letters, signs, and colors: How the display of energy-efficiency information influences consumerassessments of products. Energy Research and Social Science, 2016, 15, 86-95.

217	Knowledge, perceived potential and trust as determinants of low- and high-impact pro-environmental behaviours. Journal of Environmental Psychology, 2022, 79, 101741.	5.1	21
218	The General Confidence Scale: Coping With Environmental Uncertainty and Threat. Journal of Applied Social Psychology, 2011, 41, 2200-2229.	2.0	20
219	Fear and anger: antecedents and consequences of emotional responses to mobile communication. Journal of Risk Research, 2012, 15, 435-446.	2.6	20
220	Food loss reduction from an environmental, socio-economic and consumer perspective â€" The case of the Swiss potato market. Waste Management, 2017, 59, 451-464.	7.4	20
221	Differences in Risk Perception Between Hazards and Between Individuals. , 2018, , 63-80.		20
222	Cell Phones and Health Concerns: Impact of Knowledge and Voluntary Precautionary Recommendations. Risk Analysis, 2011, 31, 301-311.	2.7	19
223	Lay peopleâ $€^{T M}$ s and expertsâ $€^{T M}$ risk perception and acceptance of vaccination and culling strategies to fight animal epidemics. Journal of Risk Research, 2012, 15, 53-66.	2.6	19
224	The stability of risk and benefit perceptions: a longitudinal study assessing the perception of biotechnology. Journal of Risk Research, 2016, 19, 461-475.	2.6	19
225	The climate change beliefs fallacy: the influence of climate change beliefs on the perceived consequences of climate change. Journal of Risk Research, 2020, 23, 1577-1589.	2.6	19
226	Reactions of older Swiss adults to the COVID-19 pandemic: A longitudinal survey on the acceptance of and adherence to public health measures. Social Science and Medicine, 2021, 280, 114039.	3.8	19
227	Limited effects of exposure to fake news about climate change. Environmental Research Communications, 2020, 2, 081003.	2.3	19
228	Are Pension Fund Managers Overconfident?. Journal of Behavioral Finance, 2008, 9, 163-170.	1.7	18
229			18

230 We choose what we like â€" Affect as a driver of electricity portfolio choice. Energy Policy, 2018, 122,
235 Cross-cultural validation of the short version of the Food Disgust Scale in ten countries. Appetite,
235 2019, 143, 104420.
$3.7 \quad 17$
The Social Amplification of Risk Framework: A Normative Perspective on Trust?. Risk Analysis, 2022, 42, 1381-1392.
237 The weight management strategies inventory (WMSI). Development of a new measurement instrument, construct validation, and association with dieting success. Appetite, 2015, 92, 322-336.
3.7
1.6
238 Does self-prepared food taste better? Effects of food preparation on liking.. Health Psychology, 2016, 35, 500-508.

> The influence of high-voltage power lines on the feelings evoked by different Swiss surroundings.
> Energy Research and Social Science, 2017, 23, 46-59.
$6.4 \quad 16$
240 Church Attendance, Denomination, and Suicide Ideology. Journal of Social Psychology, 1996, 136, 559-566.
1.5
15241 Laypeople's Health Concerns and Health Beliefs in Regard to Risk Perception of Mobile Communication.241 Human and Ecological Risk Assessment (HERA), 2008, 14, 1235-1249.$3.4 \quad 15$
242 Low Risks, High Public Concern? The Cases of Persistent Organic Pollutants (POPs), Heavy Metals, andNanotech Particles. Human and Ecological Risk Assessment (HERA), 2010, 16, 185-198.$3.4 \quad 15$
243 Attitudes toward shared decision-making and risk communication practices in residents and theirteachers. Medical Teacher, 2011, 33, e358-e363.
244 Public risk perception in the total meat supply chain. Journal of Risk Research, 2013, 16, 1005-1020.2.615
245 Investigating novice cooks' behaviour change: Avoiding cross-contamination. Food Control, 2014, 40, 26-31.4.315A longitudinal study of the relationships between the Big Five personality traits and body sizeperception. Body Image, 2015, 14, 67-71.Biased Confidence in Risk Assessment Studies. Human and Ecological Risk Assessment (HERA), 2008, 14,
247 1226-1234.
3.4 14
248 Organic Wheat Farming Improves Grain Zinc Concentration. PLoS ONE, 2016, 11, e0160729. 2.5 14
Situative and product-specific factors influencing consumersâ€ $\bigoplus^{T M}$ risk perception of household cleaning 4.9 14 products. Safety Science, 2019, 113, 126-133.Barriers to the safe use of chemical household products: A comparison across European countries.

253 When reduced fat increases preference. How fat reduction in nutrition tables and numeracy skills
affect food choices. Appetite, 2010, 55, 730-733.

Peopleâ $€^{\mathrm{TM}} \mathrm{s}$ willingness to eat meat from animals vaccinated against epidemics. Food Policy, 2012, 37,

255 Food disgust sensitivity influences the perception of food hazards: Results from longitudinal and cross-cultural studies. Appetite, 2020, 153, 104742.

The benefit of virtue signaling: Corporate sleight-of-hand positively influences consumersâ€ ${ }^{\mathrm{TM}}$ judgments about â€œsocial license to operateâ€: Journal of Environmental Management, 2020, 260, 110047.
7.8

The impacts of diet-related health consciousness, food disgust, nutrition knowledge, and the Big Five personality traits on perceived risks in the food domain. Food Quality and Preference, 2022, 96, 104441.
4.6

13

258 Precaution in Practice. Journal of Industrial Ecology, 2008, 12, 449-458.
5.5

12
259 Neural correlates of evaluating hazards of high risk. Brain Research, 2011, 1400, 78-86. 2.2

260 Impact of social value orientation on energy conservation in different behavioral domains. Journal of Applied Social Psychology, 2013, 43, 1725-1735.
2.0

12

$$
261 \text { Perceived naturalness of water: The effect of biological agents and beneficial human action. Food }
$$

261 Quality and Preference, 2018, 68, 245-249.
$4.6 \quad 12$

262 Psychological factors that determine people's willingnessâ€Łoâ€share genetic data for research. Clinical Genetics, 2020, 97, 483-491.
2.0

12
The stereotypes attributed to hosts when they offer an environmentally-friendly vegetarian versus a
meat menu. Journal of Cleaner Production, 2020, 250, 119508 .
$9.3 \quad 12$

Effectiveness and Efficiency of Different Shapes of Food Guides. Journal of Nutrition Education and
264 Behavior, 2012, 44, 442-447.
0.7

11

Evolutionary and Modern Image Content Differentially Influence the Processing of Emotional
265 Pictures. Frontiers in Human Neuroscience, 2017, 11, 415.

When good intentions go bad: The biased perception of the environmental impact of a behavior due to
5.1

11 reliance on an actor's behavioral intention. Journal of Environmental Psychology, 2019, 64, 65-77.
4.6
confirmatory factor analysis. Food Quality and Preference, 2020, 79, 103756.

Consumersấ $€^{T M}$ perceptions of chemical household products and the associated risks. Food and Chemical
268 Consumersấ ${ }^{\text {TM }}$ perceptions of
3.6

11

Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges. Risk Analysis,
2020, 40, 2113-2127.
2.7

11
271 Tampering with Nature: A Systematic Review. Risk Analysis, 2021, 41, 141-156. 2.7 10
Chemophobia and knowledge of toxicological principles in South-Korea: perceptions of trace
272 chemicals in consumer products. Journal of Toxicology and Environmental Health - Part A: Current 2.3 10
Issues, 2021, 84, 183-195.
273 Consumer Assessment of 3D-Printed Food Shape, Taste, and Fidelity Using Chocolate and Marzipan 2.9 10 Materials. 3D Printing and Additive Manufacturing, 2022, 9, 473-482.
The influence of packaging on consumersâ $€^{\text {TM }}$ risk perception of chemical household products. AppliedMobile Communication in the Public Mind: Insights from Free Associations Related
Base Stations. Human and Ecological Risk Assessment (HERA), 2012, 18, 649-668.
Uninvited Guests at the Table â€" A Consumer Intervention for Safe Poultry Preparation. Journal of2.3
Communicating chemical risk in food to adolescents. A comparison ofÂweb and print media. Food 277 Control, 2014, 35, 407-412.2.29
The neural correlates of health risk perception in individuals with low and high numeracy. ZDM -International Journal on Mathematics Education, 2016, 48, 337-350.
Healthy choice label does not substantially improve consumersâ ϵ^{TM} ability to select healthier cereals:
279 results of an online experiment. British Journal of Nutrition, 2019, 121, 1313-1320.2.3
Risk perception and acceptance of health warning labels on wine. Food Quality and Preference, 2022,96, 104435.
4.6 9280 96, 104435
281 Risk communication, prenatal screening, and prenatal diagnosis: the illusion of informed decision-making. Journal of Risk Research, 2008, 11, 87-97.
2.6 8
The impact of specific information provision on base station siting preferences. Journal of Risk Research, 2011, 14, 703-715. 2.6 8
282
1.8 8
283 Antecedents of risk and benefit perception of CCS. Energy Procedia, 2011, 4, 6288-6291.

Sorting biotechnology applications: Results of multidimensional scaling (MDS) and cluster analysis.

Predicting how consumers perceive the naturalness of snacks: The usefulness of a simple index. Food Quality and Preference, 2021, 94, 104295.

289 Cognitive and affective determinants of generic drug acceptance and use: cross-sectional and experimental findings. Health Psychology and Behavioral Medicine, 2013, 1, 5-14.
$1.8 \quad 7$
7

An approach for comparing agricultural development to societal visions. Agronomy for Sustainable
5.3

Development, 2022, 42, 5.

Peopleâ $€^{T M}$ s perceptions of, willingness-to-take preventive remedies and their willingness-to-vaccinate
291 during times of heightened health threats. PLoS ONE, 2022, 17, e0263351.
$2.5 \quad 7$

Consumersâ $€^{\text {TM }}$ decision-making process when choosing potentially risky, frequently used chemical
household products: The case of laundry detergents. Environmental Research, 2022, 209, 112894.
7.5

7

The influence of scarcity perception on people's pro-environmental behavior and their readiness to
$5.7 \quad 7$
accept new sustainable technologies. Ecological Economics, 2022, 196, 107399.

294 A Swiss survey on teaching evidence-based medicine. Swiss Medical Weekly, 2006, 136, 776-8.
1.6

7
4.6

Quality and Preference, 2022, 101, 104633.

Neural Signaling of Food Healthiness Associated with Emotion Processing. Frontiers in Aging
Neuroscience, 2016, 8, 16.

Decision-Making Strategies for the Choice of Energy-friendly Products. Journal of Consumer Policy, 2017, 40, 81-103.
1.3

6

298 Virtual reality and immersive approaches to contextual food testing. , 2019, , 323-338.

$$
299 \text { Are people emotionally aroused by hypothetical medical scenarios in experiments? An eye tracking }
$$ study with pupil dilation. Journal of Risk Research, 2017, 20, 1308-1319.

Evaluating the Perceived Efficacy of Randomized Security Measures at Airports. Risk Analysis, 2020, 40, 1469-1480.

A longitudinal study examining the influence of diet-related compensatory behavior on healthy weight management. Appetite, 2021, 156, 104975.

Selling, buying and eating â€" a synthesis study on dietary patterns across language regions in Switzerland. British Food Journal, 2022, 124, 1502-1518.
2.9

5

Special issue on the conference â€ Environmental Decisions: Risks and Uncertaintiesâ $€^{T M}$ in Monte VeritÃ, Switzerland. Journal of Risk Research, 2012, 15, 235-236.

Drawings or 3D models: Do illustration methods matter when assessing perceived body size and body dissatisfaction?. PLoS ONE, 2021, 16, e0261645. responsibilities. Safety Science, 2022, 154, 105864.311 The perceived costs and benefits that drive the acceptability of risk-based security screenings at

Virtual reality (VR) as a new tool for nutrition and behaviour research. A review of four studies..

[^0]: 161 Lay-people's knowledge about toxicology and its principles in eight European countries. Food and Chemical Toxicology, 2019, 131, 110560.

