Stefan Emeis

List of Publications by Citations

Source: https://exaly.com/author-pdf/533370/stefan-emeis-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

204 ext. papers

2,978 citations

32 h-index

2-index

2-index

2-index

2-index

2-index

2-index

2-index

#	Paper	IF	Citations
151	Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. <i>Atmospheric Environment</i> , 2000 , 34, 1435-1453	5.3	168
150	Surface-based remote sensing of the mixing-layer height a review. <i>Meteorologische Zeitschrift</i> , 2008 , 17, 621-630	3.1	167
149	Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. <i>Atmospheric Environment</i> , 2004 , 38, 273-286	5.3	131
148	Secondary effects of urban heat island mitigation measures on air quality. <i>Atmospheric Environment</i> , 2016 , 125, 199-211	5.3	105
147	Process-based modelling of isoprene emission by oak leaves. <i>Plant, Cell and Environment</i> , 2000 , 23, 585	-559,5	99
146	Air Pollution Transport in an Alpine Valley: Results From Airborne and Ground-Based Observations. Boundary-Layer Meteorology, 2009 , 131, 441-463	3.4	79
145	First in situ evidence of wakes in the far field behind offshore wind farms. <i>Scientific Reports</i> , 2018 , 8, 2163	4.9	78
144	Influence of mixing layer height upon air pollution in urban and sub-urban areas. <i>Meteorologische Zeitschrift</i> , 2006 , 15, 647-658	3.1	74
143	Remote Sensing Methods to Investigate Boundary-layer Structures relevant to Air Pollution in Cities. <i>Boundary-Layer Meteorology</i> , 2006 , 121, 377-385	3.4	74
142	The dependence of offshore turbulence intensity on wind speed. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2010 , 98, 466-471	3.7	67
141	Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. <i>Meteorologische Zeitschrift</i> , 2007 , 16, 415-424	3.1	67
140	Revisiting the Definition of the Drag Coefficient in the Marine Atmospheric Boundary Layer. Journal of Physical Oceanography, 2010 , 40, 2325-2332	2.4	66
139	Boundary-layer anemometry by optical remote sensing for wind energy applications. <i>Meteorologische Zeitschrift</i> , 2007 , 16, 337-347	3.1	66
138	Nocturnal secondary ozone concentration maxima analysed by sodar observations and surface measurements. <i>Atmospheric Environment</i> , 2000 , 34, 4315-4329	5.3	66
137	Measurement and simulation of the 16/17 April 2010 Eyjafjallajkull volcanic ash layer dispersion in the northern Alpine region. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2689-2701	6.8	63
136	Mixing layer height over Munich, Germany: Variability and comparisons of different methodologies. Journal of Geophysical Research, 2006 , 111,		63
135	A simple analytical wind park model considering atmospheric stability. <i>Wind Energy</i> , 2009 , 13, 459-469	3.4	57

(2012-2017)

134	Simultaneous multicopter-based air sampling and sensing of meteorological variables. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 2773-2784	4	50	
133	Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich. <i>Atmospheric Environment</i> , 2008 , 42, 4036-4046	5.3	50	
132	The surface energy balance and the mixing height in urban areasEctivities and recommendations of COST-Action 715. <i>Boundary-Layer Meteorology</i> , 2007 , 124, 3-24	3.4	48	
131	The VOTALP Mesolcina Valley Campaign 1996 Leoncept, background and some highlights. <i>Atmospheric Environment</i> , 2000 , 34, 1395-1412	5.3	46	
130	Wind Energy Meteorology. <i>Green Energy and Technology</i> , 2013 ,	0.6	46	
129	Current issues in wind energy meteorology. <i>Meteorological Applications</i> , 2014 , 21, 803-819	2.1	42	
128	The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 1217-1234	6.1	41	
127	Reduction of horizontal wind speed in a boundary layer with obstacles. <i>Boundary-Layer Meteorology</i> , 1993 , 64, 297-305	3.4	40	
126	Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data. <i>Meteorologische Zeitschrift</i> , 2009 , 18, 149-154	3.1	39	
125	Influences of the 2010 EyjafjallajRull volcanic plume on air quality in the northern Alpine region. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8555-8575	6.8	37	
124	Surface-Based Remote Sensing of the Atmospheric Boundary Layer. <i>Atmospheric and Oceanographic Sciences Library</i> , 2011 ,		36	
123	Wind and turbulence in the urban boundary layer analysis from acoustic remote sensing data and fit to analytical relations. <i>Meteorologische Zeitschrift</i> , 2007 , 16, 393-406	3.1	36	
122	Modification of air flow over an escarpment Results from the HjardemDexperiment. <i>Boundary-Layer Meteorology</i> , 1995 , 74, 131-161	3.4	35	
121	Frequency distributions of the mixing height over an urban area from SODAR data. <i>Meteorologische Zeitschrift</i> , 2004 , 13, 361-367	3.1	33	
120	Wind Energy Meteorology. <i>Green Energy and Technology</i> , 2018 ,	0.6	32	
119	Characteristics and sources of PM in seasonal perspective IA case study from one year continuously sampling in Beijing. <i>Atmospheric Pollution Research</i> , 2016 , 7, 235-248	4.5	29	
118	Micrometeorological impacts of offshore wind farms as seen in observations and simulations. <i>Environmental Research Letters</i> , 2018 , 13, 124012	6.2	29	
117	Evaluation of the Interpretation of Ceilometer Data with RASS and Radiosonde Data. Boundary-Layer Meteorology, 2012 , 143, 25-35	3.4	27	

116	Wind speed and shear associated with low-level jets over Northern Germany. <i>Meteorologische Zeitschrift</i> , 2014 , 23, 295-304	3.1	25
115	Developing a Research Strategy to Better Understand, Observe, and Simulate Urban Atmospheric Processes at Kilometer to Subkilometer Scales. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, ES261-ES264	6.1	24
114	Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. <i>Science of the Total Environment</i> , 2007 , 383, 141-63	10.2	22
113	Remote sensing winds in complex terrain has review. <i>Meteorologische Zeitschrift</i> , 2015 , 24, 547-555	3.1	22
112	Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric Flow Models with Aircraft Measurements. <i>Meteorologische Zeitschrift</i> , 2018 , 27, 401-415	3.1	22
111	Chemical characteristics of PM 2.5 during haze episodes in spring 2013 in Beijing. <i>Urban Climate</i> , 2017 , 22, 51-63	6.8	21
110	Offshore wind farm wake recovery: Airborne measurements and its representation in engineering models. <i>Wind Energy</i> , 2020 , 23, 1249-1265	3.4	20
109	A Comparison Between Modelled and Measured Mixing-Layer Height Over Munich. <i>Boundary-Layer Meteorology</i> , 2009 , 131, 425-440	3.4	20
108	High resolution climate projections to assess the future vulnerability of European urban areas to climatological extreme events. <i>Theoretical and Applied Climatology</i> , 2017 , 127, 667-683	3	19
107	Wind-driven wave heights in the German Bight. Ocean Dynamics, 2009, 59, 463-475	2.3	19
106	Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1). <i>Geoscientific Model Development</i> , 2020 , 13, 249-268	6.3	19
105	Vertical wind profiles over an urban area. <i>Meteorologische Zeitschrift</i> , 2004 , 13, 353-359	3.1	18
104	Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. <i>Meteorologische Zeitschrift</i> , 2001 , 10, 141-149	3.1	18
103	Determination of mixing layer heights from ceilometer data 2004 , 5571, 248		17
102	Pressure drag and effective roughness length with neutral stratification. <i>Boundary-Layer Meteorology</i> , 1987 , 39, 379-401	3.4	17
101	Assessing the meteorological conditions of a deep Italian Alpine valley system by means of a measuring campaign and simulations with two models during a summer smog episode. <i>Atmospheric Environment</i> , 2001 , 35, 5441-5454	5.3	16
100	Flow over an embankment: Speed-up and pressure perturbation. <i>Boundary-Layer Meteorology</i> , 1993 , 63, 163-182	3.4	15
99	Long-range modifications of the wind field by offshore wind parks Tresults of the project WIPAFF. <i>Meteorologische Zeitschrift</i> , 2020 , 29, 355-376	3.1	15

(2012-2019)

98	Urban Climate Under Change [UC]2 IA National Research Programme for Developing a Building-Resolving Atmospheric Model for Entire City Regions. <i>Meteorologische Zeitschrift</i> , 2019 , 28, 95-104	3.1	14
97	Aerosol concentration measurements with a lidar ceilometer: results of a one year measuring campaign 2004 , 5235, 486		14
96	Pressure Drag of Obstacles in the Atmospheric Boundary Layer. <i>Journal of Applied Meteorology and Climatology</i> , 1990 , 29, 461-476		14
95	Seasonal variability and source distribution of haze particles from a continuous one-year study in Beijing. <i>Atmospheric Pollution Research</i> , 2018 , 9, 627-633	4.5	13
94	Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. <i>Meteorologische Zeitschrift</i> , 2010 , 19, 115-129	3.1	13
93	Detection of pollution transport events southeast of Mexico City using ground-based visible spectroscopy measurements of nitrogen dioxide. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4827-484	o ^{6.8}	13
92	Exploring the wakes of large offshore wind farms. <i>Journal of Physics: Conference Series</i> , 2016 , 753, 0920)1 :4 3	13
91	A Method for Increasing the Turbulent Kinetic Energy in the MellorNamadallanjilBoundary-Layer Parametrization. <i>Boundary-Layer Meteorology</i> , 2012 , 145, 329-349	3.4	12
90	A year of H2 measurements at Weybourne Atmospheric Observatory, UK. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2012 , 64, 17771	3.3	12
89	Development of Emission Models and Improvement of Emission Data for Germany. <i>Journal of Atmospheric Chemistry</i> , 2002 , 42, 179-206	3.2	12
88	High-Resolution Observations of Transport and Exchange Processes in Mountainous Terrain. <i>Atmosphere</i> , 2018 , 9, 457	2.7	12
87	Three-Dimensional Observation of Atmospheric Processes in Cities. <i>Meteorologische Zeitschrift</i> , 2019 , 28, 121-138	3.1	11
86	Atmospheric influences and local variability of air pollution close to a motorway in an Alpine valley during winter. <i>Meteorologische Zeitschrift</i> , 2008 , 17, 297-309	3.1	11
85	In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight. <i>Earth System Science Data</i> , 2020 , 12, 935-946	10.5	10
84	Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time. <i>Meteorologische Zeitschrift</i> , 2016 , 25, 267-279	3.1	10
83	Observational techniques to assist the coupling of CWE/CFD models and meso-scale meteorological models. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2015 , 144, 24-30	3.7	9
82	Upper limit for wind shear in stably stratified conditions expressed in terms of a bulk Richardson number. <i>Meteorologische Zeitschrift</i> , 2017 , 26, 421-430	3.1	9
81	Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 1571-1583	4	9

80	Examples for the determination of turbulent (sub-synoptic) fluxes with inverse methods. <i>Meteorologische Zeitschrift</i> , 2008 , 17, 3-11	3.1	9
79	Development and validation of tools for the implementation of european air quality policy in Germany (Project VALIUM). <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 3077-3083	6.8	9
78	SODAR Messungen zur Atmosphilenforschung und UmweltBerwachung. <i>Meteorologische Zeitschrift</i> , 1998 , 7, 11-14	3.1	9
77	A measurement based analysis of the spatial distribution, temporal variation and chemical composition of particulate matter in Munich and Augsburg. <i>Meteorologische Zeitschrift</i> , 2011 , 20, 47-57	3.1	8
76	Mixing layer height and air pollution levels in urban area 2012,		8
75	History of the Meteorologische Zeitschrift. <i>Meteorologische Zeitschrift</i> , 2008 , 17, 685-693	3.1	8
74	Long-term observations of the urban mixing-layer height with ceilometers. <i>IOP Conference Series:</i> Earth and Environmental Science, 2008 , 1, 012027	0.3	8
73	SensitivitElder Ozonbildung auf Emissionen von VOCs und NOx Œine Fallstudie mit dem Boxmodell BAYROZON. <i>Meteorologische Zeitschrift</i> , 1997 , 6, 60-72	3.1	8
72	Influences of the 2010 EyjafjallajBull volcanic plume on air quality in the northern Alpine region		8
71	Source apportionment and the role of meteorological conditions in the assessment of air pollution exposure due to urban emissions		8
70	How to bring urban and global climate studies together with urban planning and architecture?. <i>Developments in the Built Environment</i> , 2020 , 4, 100023	5.1	8
69	Measurements of heat and humidity fluxes in the wake of offshore wind turbines. <i>Journal of Renewable and Sustainable Energy</i> , 2017 , 9, 053304	2.5	7
68	Spatial structure and dispersion of the 16/17 April 2010 volcanic ash cloud over Germany		7
67	Physics of Wind Parks. <i>Green Energy and Technology</i> , 2013 , 135-153	0.6	6
66	Adding confidence levels and error bars to mixing layer heights detected by ceilometer 2011,		6
65	Comparison of Logarithmic Wind Profiles and Power Law Wind Profiles and their Applicability for Offshore Wind Profiles 2007 , 61-64		6
64	Resistance law, effective roughness length, and deviation angle over hilly terrain. <i>Boundary-Layer Meteorology</i> , 1991 , 55, 191-198	3.4	6
63	Evaluation of a simple analytical model for offshore wind farm wake recovery by in situ data and Weather Research and Forecasting simulations. <i>Wind Energy</i> , 2021 , 24, 212-228	3.4	6

62	Chapter 26 Applications in Meteorology. <i>Developments in Soil Science</i> , 2009 , 33, 603-622	1.3	5
61	Three-Dimensional Ground-Based Measurements of Urban Air Quality to Evaluate Satellite Derived Interpretations for Urban Air Pollution. <i>Water, Air and Soil Pollution</i> , 2002 , 2, 91-102		5
60	Field measurements within a quarter of a city including a street canyon to produce a validation data set. <i>International Journal of Environment and Pollution</i> , 2005 , 25, 201	0.7	5
59	Surface pressure distribution and pressure drag on mountains. <i>Meteorology and Atmospheric Physics</i> , 1990 , 43, 173-185	2	5
58	Combined evaluations of meteorological parameters, traffic noise and air pollution in an Alpine valley. <i>Meteorologische Zeitschrift</i> , 2010 , 19, 47-61	3.1	4
57	Parameterization of turbulent viscosity over orography. <i>Meteorologische Zeitschrift</i> , 2004 , 13, 33-38	3.1	4
56	The Role of Atmospheric Stability and Turbulence in Offshore Wind-Farm Wakes in the German Bight. <i>Boundary-Layer Meteorology</i> ,1	3.4	4
55	Half-Order Stable Boundary-Layer Parametrization Without the Eddy Viscosity Approach for Use in Numerical Weather Prediction. <i>Boundary-Layer Meteorology</i> , 2015 , 154, 207-228	3.4	3
54	Correlation equation for the marine drag coefficient and wave steepness. <i>Ocean Dynamics</i> , 2012 , 62, 1323-1333	2.3	3
53	New results from continuous mixing layer height monitoring in urban atmosphere 2008,		3
52	Observation of aerosol in the mixing layer by a ground-based lidar ceilometer 2003,		3
51	A diagnostic model for synoptic heat budgets. <i>Archives for Meteorology, Geophysics and Bioclimatology, Series A</i> , 1985 , 33, 407-420		3
50	Air quality and engine emission at Paris CDG airport during AIRPUR field campaigns. WIT Transactions on Ecology and the Environment, 2006,	1	3
49	Observed and simulated turbulent kinetic energy (WRF 3.8.1) overlarge offshore wind farms 2019 ,		2
48	On a relation between particle size distribution and mixing layer height 2011,		2
47	Measuring the emissions of trace compounds from a livestock building 1997 , 3106, 137		2
46	Fusion of air pollution data in the region of Munich, Germany, by the ICAROS NET platform 2004,		2
45	Evaluation of mixing layer height monitoring by ceilometer with SODAR and microlight aircraft measurements 2005 ,		2

44	SmartAQnet: remote and in-situ sensing of urban air quality 2017,		2
43	In-situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight		2
42	The five main influencing factors on lidar errors in complex terrain		2
41	Assessment of air pollution in the vicinity of major alpine routes. <i>Alliance for Global Sustainability Bookseries</i> , 2007 , 203-214		2
40	Wind Data Sources. <i>Green Energy and Technology</i> , 2018 , 183-230	0.6	1
39	Offshore Winds. <i>Green Energy and Technology</i> , 2013 , 95-133	0.6	1
38	Long-term study of air urban quality together with mixing layer height 2013,		1
37	Investigation of boundary layer dynamics, dust and volcanic ash clouds with laser ceilometer 2013,		1
36	Application of continuous remote sensing of mixing layer height for assessment of airport air quality 2010 ,		1
35	Meteorological Aspects of Wind Park Design. <i>Green</i> , 2011 , 1,		1
34	Comparison of continuous detection of mixing layer heights by ceilometer with radiosonde observations 2011 ,		1
33	Improved near-range performance of a low-cost one lens lidar scanning the boundary layer 2009,		1
32	Determination of mixing layer heights by ceilometer and influences upon air quality at Mexico City airport 2009 ,		1
31	Evaluation of continuous ceilometer-based mixing layer heights and correlations with PM 2.5 concentrations in Beijing 2009 ,		1
30	Temporal and spatial structure of a volcanic ash cloud: ground-based remote sensing and numerical modeling 2010 ,		1
29	Das erste Jahrhundert deutschsprachiger meteorologischer Lehrbüher. <i>Berichte Zur Wissenschaftsgeschichte</i> , 2006 , 29, 39-51	0.4	1
28	Long-term monitoring of layering of lower atmosphere in urban environments by ceilometer 2007 , 6745, 214		1
27	Airport air quality and emission studies by remote sensing and inverse dispersion modelling 2006 , 6362, 352		1

26	Sodar and RASS. Springer Handbooks, 2021 , 663-684	1.3	1
25	Pilot Actions in European Cities la Etuttgart 2016 , 281-303		1
24	Vertical Profiles Over Flat Terrain. <i>Green Energy and Technology</i> , 2018 , 31-89	0.6	1
23	Report on the Research Project OWID IDffshore Wind Design Parameter 2007, 81-85		1
22	Winds in Complex Terrain. <i>Green Energy and Technology</i> , 2013 , 75-93	0.6	1
21	Three-Dimensional Ground-Based Measurements of Urban Air Quality to Evaluate Satellite Derived Interpretations for Urban Air Pollution 2002 , 91-102		1
20	Forecasting Models for Urban Warming in Climate Change 2016 , 3-39		1
19	Detection of pollution transport events southeast of Mexico City using ground-based visible spectroscopy measurements of nitrogen dioxide		1
18	Analysis of Some Major Limitations of Analytical Top-Down Wind-Farm Models. <i>Boundary-Layer Meteorology</i> ,1	3.4	0
17	Physics of Wind Parks. <i>Green Energy and Technology</i> , 2018 , 157-182	0.6	O
16	The five main influencing factors for lidar errors in complex terrain. Wind Energy Science, 2022, 7, 413-4	3ქ.2	0
15	Standards [An Important Step for the (Public) Use of Lidars. <i>EPJ Web of Conferences</i> , 2016 , 119, 23023	0.3	
14	Vertical Profiles Over Flat Terrain. <i>Green Energy and Technology</i> , 2013 , 23-73	0.6	
13	Basic Principles of Surface-Based Remote Sensing. <i>Atmospheric and Oceanographic Sciences Library</i> , 2011 , 33-71		
12	Weitreichender Windschatten. <i>Physik in Unserer Zeit</i> , 2011 , 42, 228-233	0.1	
11	Emission rates with the boundary layer budget method supported by acoustic remote sensing. <i>IOP Conference Series: Earth and Environmental Science</i> , 2008 , 1, 012055	0.3	
10	Measurement Systems for Wind, Solar and Hydro Power Applications. Springer Handbooks, 2021, 1385-	1405	
9	Wind Regimes. <i>Green Energy and Technology</i> , 2018 , 11-30	0.6	

8	Offshore Winds. Green Energy and Technology, 2018 , 113-155	0.6
7	Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles 1995 , 739-739	
6	Cool Cities Itlean Cities? Secondary Impacts of Urban Heat Island Mitigation Strategies on Urban Air Quality. <i>Springer Proceedings in Complexity</i> , 2016 , 371-375	0.3
5	Derivation of Vertical Wind and Turbulence Profiles, the Mixing-Layer Height, and the Vertical Turbulent Exchange Coefficient from Sodar and Ceilometer Soundings in Urban Measurement Campaigns 2009 , 133-141	
4	Analytical Description and Vertical Structure of the Atmospheric Boundary Layer. <i>Atmospheric and Oceanographic Sciences Library</i> , 2011 , 9-32	
3	Enhancing the Simulation of Turbulent Kinetic Energy in the Marine Atmospheric Boundary Layer. <i>Springer Proceedings in Physics</i> , 2012 , 163-166	0.2
2	Wind Regimes. <i>Green Energy and Technology</i> , 2013 , 9-21	0.6
1	Urban ClimateImpact and Interaction of Air Quality and Global Change 2013 , 345-354	