
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5333518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Relationship of Lightning Radio Pulse Amplitudes and Source Altitudes as Observed by LOFAR. Earth and Space Science, 2022, 9, e2021EA001958.	2.6	3
2	Search for Relativistic Magnetic Monopoles with Eight Years of IceCube Data. Physical Review Letters, 2022, 128, 051101.	7.8	12
3	Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube. Astrophysical Journal, 2022, 926, 59.	4.5	7
4	Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data. Astrophysical Journal, 2022, 928, 50.	4.5	67
5	The Initial Stage of Cloud Lightning Imaged in Highâ€Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033126.	3.3	20
6	Needle Propagation and Twinkling Characteristics. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034252.	3.3	10
7	Detection of a particle shower at the Glashow resonance with IceCube. Nature, 2021, 591, 220-224.	27.8	86
8	Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory. Astrophysical Journal, 2021, 910, 4.	4.5	18
9	Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). Journal of Instrumentation, 2021, 16, P03025.	1.2	52
10	A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017. Astrophysical Journal, 2021, 911, 67.	4.5	9
11	Depth of shower maximum and mass composition of cosmic rays from 50ÂPeV to 2ÂEeV measured with the LOFAR radio telescope. Physical Review D, 2021, 103, .	4.7	19
12	IceCube high-energy starting event sample: Description and flux characterization with 7.5Âyears of data. Physical Review D, 2021, 104, .	4.7	142
13	Timing Calibration and Windowing Technique Comparison for Lightning Mapping Arrays. Earth and Space Science, 2021, 8, e2020EA001523.	2.6	0
14	A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory. Journal of Instrumentation, 2021, 16, P07041.	1.2	29
15	A distinct negative leader propagation mode. Scientific Reports, 2021, 11, 16256.	3.3	9
16	A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors. Journal of Instrumentation, 2021, 16, P08034.	1.2	11
17	LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories. Computer Physics Communications, 2021, 266, 108018.	7.5	8
18	Distinguishing features of high altitude negative leaders as observed with LOFAR. Atmospheric Research, 2021, 260, 105688.	4.1	8

#	Article	IF	CITATIONS
19	Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. Astrophysical Journal Letters, 2021, 920, L45.	8.3	12
20	Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data. Astroparticle Physics, 2020, 116, 102392.	4.3	3
21	Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope. Physical Review D, 2020, 102, .	4.7	34
22	Design and performance of the first IceAct demonstrator at the South Pole. Journal of Instrumentation, 2020, 15, T02002-T02002.	1.2	3
23	In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes. Journal of Instrumentation, 2020, 15, P06032-P06032.	1.2	14
24	IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog. Astrophysical Journal Letters, 2020, 898, L10.	8.3	30
25	Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	5.4	5
26	Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. European Physical Journal C, 2020, 80, 1.	3.9	6
27	Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Physical Review Letters, 2020, 125, 121104.	7.8	137
28	A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. Astrophysical Journal, 2020, 892, 53.	4.5	20
29	Reconstructing air shower parameters with LOFAR using event specific GDAS atmosphere. Astroparticle Physics, 2020, 123, 102470.	4.3	10
30	Radio Emission Reveals Inner Meter-Scale Structure of Negative Lightning Leader Steps. Physical Review Letters, 2020, 124, 105101.	7.8	28
31	Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Yr of Data from the IceCube Observatory. Astrophysical Journal, 2020, 891, 9.	4.5	12
32	Time-Integrated Neutrino Source Searches with 10ÂYears of IceCube Data. Physical Review Letters, 2020, 124, 051103.	7.8	221
33	Determining Electric Fields in Thunderclouds With the Radiotelescope LOFAR. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031433.	3.3	8
34	On the cosmic-ray energy scale of the LOFAR radio telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 017-017.	5.4	7
35	eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. Physical Review Letters, 2020, 125, 141801.	7.8	57
36	Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data. European Physical Journal C, 2020, 80, 1.	3.9	12

#	Article	IF	CITATIONS
37	A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube. Astrophysical Journal, 2020, 890, 111.	4.5	20
38	A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. Astrophysical Journal, 2020, 893, 102.	4.5	11
39	IceCube Search for High-energy Neutrino Emission from TeV Pulsar Wind Nebulae. Astrophysical Journal, 2020, 898, 117.	4.5	21
40	Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube. Astrophysical Journal, 2019, 880, 103.	4.5	60
41	Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. Astrophysical Journal, 2019, 886, 12.	4.5	53
42	Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. European Physical Journal C, 2019, 79, 1.	3.9	75
43	Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector. Astrophysical Journal, 2019, 872, 133.	4.5	7
44	Constraints on Minute-Scale Transient Astrophysical Neutrino Sources. Physical Review Letters, 2019, 122, 051102.	7.8	23
45	Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Physical Review D, 2019, 99, .	4.7	55
46	Measurement of Atmospheric Neutrino Oscillations at 6–56ÂGeV with IceCube DeepCore. Physical Review Letters, 2018, 120, 071801.	7.8	88
47	Astrophysical neutrinos and cosmic rays observed by IceCube. Advances in Space Research, 2018, 62, 2902-2930.	2.6	20
48	Search for neutrinos from decaying dark matter with IceCube. European Physical Journal C, 2018, 78, 831.	3.9	62
49	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	12.6	654
50	Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science, 2018, 361, 147-151.	12.6	601
51	A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data. Astrophysical Journal, 2018, 857, 117.	4.5	22
52	All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophysical Journal, 2017, 835, 151.	4.5	198
53	THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX. Astrophysical Journal, 2017, 835, 45.	4.5	186
54	The IceCube realtime alert system. Astroparticle Physics, 2017, 92, 30-41.	4.3	116

#	Article	IF	CITATIONS
55	The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 2017, 12, P03012-P03012.	1.2	390
56	Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. Astrophysical Journal, 2017, 846, 136.	4.5	21
57	Search for annihilating dark matter in the Sun with 3Âyears of IceCube data. European Physical Journal C, 2017, 77, 1.	3.9	111
58	Measurement of the \$\$u _{mu }\$\$ ν μ energy spectrum with IceCube-79. European Physical Journal C, 2017, 77, 692.	3.9	24
59	Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. Astrophysical Journal, 2017, 849, 67.	4.5	95
60	Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophysical Journal, 2017, 843, 112.	4.5	116
61	First search for dark matter annihilations in the Earth with the IceCube detector. European Physical Journal C, 2017, 77, 1.	3.9	20
62	Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore. European Physical Journal C, 2017, 77, 1.	3.9	62
63	OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA. Astrophysical Journal, 2016, 833, 3.	4.5	336
64	SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR. Astrophysical Journal, 2016, 830, 129.	4.5	7
65	Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10ÂPeV with IceCube. Physical Review Letters, 2016, 117, 241101.	7.8	111
66	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	4.5	49
67	ANISOTROPY IN COSMIC-RAY ARRIVAL DIRECTIONS IN THE SOUTHERN HEMISPHERE BASED ON SIX YEARS OF DATA FROM THE ICECUBE DETECTOR. Astrophysical Journal, 2016, 826, 220.	4.5	72
68	Searches for Sterile Neutrinos with the IceCube Detector. Physical Review Letters, 2016, 117, 071801.	7.8	140
69	All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore. European Physical Journal C, 2016, 76, 1.	3.9	37
70	AN ALL-SKY SEARCH FOR THREE FLAVORS OF NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE ICECUBE NEUTRINO OBSERVATORY. Astrophysical Journal, 2016, 824, 115.	4.5	109
71	LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY. Astrophysical Journal Letters, 2016, 824, L28.	8.3	27
72	Characterization of the atmospheric muon flux in IceCube. Astroparticle Physics, 2016, 78, 1-27.	4.3	51

#	Article	IF	CITATIONS
73	Searches for relativistic magnetic monopoles in IceCube. European Physical Journal C, 2016, 76, 1.	3.9	29
74	THE SEARCH FOR TRANSIENT ASTROPHYSICAL NEUTRINO EMISSION WITH ICECUBE-DEEPCORE. Astrophysical Journal, 2016, 816, 75.	4.5	5
75	THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS. Astrophysical Journal, 2015, 811, 52.	4.5	39