Steven T Staben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5333141/publications.pdf

Version: 2024-02-01

361413 501196 1,360 28 20 28 citations h-index g-index papers 30 30 30 1910 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of 2-{3-[2-(1-Isopropyl-3-methyl-1 <i>H</i> -1,2–4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2- <i>d</i>][1,4]oxaze (GDC-0032): A β-Sparing Phosphoinositide 3-Kinase Inhibitor with High Unbound Exposure and Robust in Vivo Antitumor Activity. Iournal of Medicinal Chemistry, 2013, 56, 4597-4610.	pin-9-yl]-1	<i>H</i> -pyr
2	NF- $\hat{\mathbb{P}}$ B inducing kinase is a therapeutic target for systemic lupus erythematosus. Nature Communications, 2018, 9, 179.	12.8	98
3	MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition. PLoS Biology, 2019, 17, e3000354.	5.6	94
4	Rapid Synthesis of 1,3,5-Substituted 1,2,4-Triazoles from Carboxylic Acids, Amidines, and Hydrazines. Journal of Organic Chemistry, 2011, 76, 1177-1179.	3.2	91
5	Fourâ€Component Synthesis of Fully Substituted 1,2,4â€Triazoles. Angewandte Chemie - International Edition, 2010, 49, 325-328.	13.8	89
6	Heterobifunctional Molecules Induce Dephosphorylation of Kinases–A Proof of Concept Study. Journal of Medicinal Chemistry, 2020, 63, 2807-2813.	6.4	88
7	The Rational Design of Selective Benzoxazepin Inhibitors of the $\hat{I}\pm$ -Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of $(\langle i\rangle S i>-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[< i\rangle f i> imidazo[1,2-< i\rangle d i>][1,4]oxa (GDC-0326), Journal of Medicinal Chemistry, 2016, 59, 985-1002.$	azepin-9-yl)87y)prop <mark>a</mark> r
8	Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell, 2021, 184, 4480-4494.e15.	28.9	61
9	Rational Design of Phosphoinositide 3-Kinase α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase β Isoform. Journal of Medicinal Chemistry, 2011, 54, 7815-7833.	6.4	60
10	The Crystal Structure of the Catalytic Domain of the NF-κB Inducing Kinase Reveals a Narrow but Flexible Active Site. Structure, 2012, 20, 1704-1714.	3.3	57
11	Structure-Based Design of Tricyclic NF-κB Inducing Kinase (NIK) Inhibitors That Have High Selectivity over Phosphoinositide-3-kinase (PI3K). Journal of Medicinal Chemistry, 2017, 60, 627-640.	6.4	51
12	Back Pocket Flexibility Provides Group II p21-Activated Kinase (PAK) Selectivity for Type I 1/2 Kinase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1033-1045.	6.4	50
13	Potent and selective inhibitors of PI3KÎ: Obtaining isoform selectivity from the affinity pocket and tryptophan shelf. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4296-4302.	2.2	48
14	Monomeric Targeted Protein Degraders. Journal of Medicinal Chemistry, 2020, 63, 11330-11361.	6.4	48
15	A General Strategy for the Construction of Functionalized Azaindolines via Domino Palladium-Catalyzed Heck Cyclization/Suzuki Coupling. Organic Letters, 2017, 19, 3616-3619.	4.6	45
16	RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy. Cancer Discovery, 2022, 12, 204-219.	9.4	40
17	Scaffold-Hopping Approach To Discover Potent, Selective, and Efficacious Inhibitors of NF-κB Inducing Kinase. Journal of Medicinal Chemistry, 2018, 61, 6801-6813.	6.4	38
18	Structure-based design of thienobenzoxepin inhibitors of PI3-kinase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4054-4058.	2.2	30

#	Article	IF	CITATIONS
19	Structure-based optimization of pyrazolo-pyrimidine and -pyridine inhibitors of PI3-kinase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6048-6051.	2.2	24
20	Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase \hat{l}^2 isoform. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2606-2613.	2.2	21
21	Design of Selective Benzoxazepin PI3Kδ Inhibitors Through Control of Dihedral Angles. ACS Medicinal Chemistry Letters, 2017, 8, 936-940.	2.8	21
22	Cis-Amide isosteric replacement in thienobenzoxepin inhibitors of PI3-kinase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 897-901.	2.2	14
23	Abstract 156: Preclinical characterization of GDC-0077, a specific PI3K alpha inhibitor in early clinical development. Cancer Research, 2017, 77, 156-156.	0.9	11
24	Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. Journal of Medicinal Chemistry, 2020, 63, 7957-7985.	6.4	10
25	A Multifaceted Hit-Finding Approach Reveals Novel LC3 Family Ligands. Biochemistry, 2023, 62, 633-644.	2.5	8
26	Primary Amine Tethered Small Molecules Promote the Degradation of X-Linked Inhibitor of Apoptosis Protein. Journal of the American Chemical Society, 2021, 143, 10571-10575.	13.7	7
27	Structure Based Design of Potent Selective Inhibitors of Protein Kinase D1 (PKD1). ACS Medicinal Chemistry Letters, 2019, 10, 1260-1265.	2.8	5
28	Isoform Selective PI3K Inhibitors for Treating Cancer. Topics in Medicinal Chemistry, 2017, , 333-333.	0.8	2