Gregory H Tesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5332977/publications.pdf

Version: 2024-02-01

53794 60623 6,786 93 45 81 citations h-index g-index papers 95 95 95 7287 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney International, 2004, 65, 116-128.	5.2	461
2	Rodent models of streptozotocin-induced diabetic nephropathy (Methods in Renal Research). Nephrology, 2007, 12, 261-266.	1.6	386
3	Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney International, 2006, 69, 73-80.	5 . 2	378
4	Inflammation in Diabetic Nephropathy. Mediators of Inflammation, 2012, 2012, 1-12.	3.0	330
5	Monocyte Chemoattractant Protein 1–Dependent Leukocytic Infiltrates Are Responsible for Autoimmune Disease in Mrl- <i>Faslpr</i> /i> Mice. Journal of Experimental Medicine, 1999, 190, 1813-1824.	8.5	287
6	Deletion of Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure. Hypertension, 2009, 54, 537-543.	2.7	272
7	Intercellular Adhesion Molecule-1 Deficiency Is Protective against Nephropathy in Type 2 Diabetic db/db Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 1711-1722.	6.1	247
8	Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. Journal of Clinical Investigation, 1999, 103, 73-80.	8.2	238
9	Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia, 2007, 50, 471-480.	6.3	222
10	The Role of p38î± Mitogen-Activated Protein Kinase Activation in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2004, 15, 370-379.	6.1	184
11	Diabetic nephropathy – is this an immune disorder?. Clinical Science, 2017, 131, 2183-2199.	4.3	182
12	Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia, 2004, 47, 1210-1222.	6.3	181
13	Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrology Dialysis Transplantation, 2004, 19, 2987-2996.	0.7	171
14	A Pathogenic Role for c-Jun Amino-Terminal Kinase Signaling in Renal Fibrosis and Tubular Cell Apoptosis. Journal of the American Society of Nephrology: JASN, 2007, 18, 472-484.	6.1	152
15	Quantification of renal pathology by image analysis (Methods in Renal Research). Nephrology, 2007, 12, 553-558.	1.6	148
16	Recent insights into diabetic renal injury from the <i>db/db </i> mouse model of type 2 diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2011, 300, F301-F310.	2.7	120
17	Macrophages and Diabetic Nephropathy. Seminars in Nephrology, 2010, 30, 290-301.	1.6	119
18	ROLE OF MACROPHAGES IN COMPLICATIONS OF TYPE 2 DIABETES. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 1016-1019.	1.9	116

#	Article	IF	CITATIONS
19	Review: Serum and urine biomarkers of kidney disease: A pathophysiological perspective. Nephrology, 2010, 15, 609-616.	1.6	107
20	Macrophage Mineralocorticoid Receptor Signaling Plays a Key Role in Aldosterone-Independent Cardiac Fibrosis. Endocrinology, 2012, 153, 3416-3425.	2.8	102
21	Blockade of p38α MAPK Ameliorates Acute Inflammatory Renal Injury in Rat Anti-GBM Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2003, 14, 338-351.	6.1	101
22	Role of MKK3–p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice. Diabetologia, 2009, 52, 347-358.	6.3	100
23	TGF-Î ² 1-activated kinase-1 regulates inflammation and fibrosis in the obstructed kidney. American Journal of Physiology - Renal Physiology, 2011, 300, F1410-F1421.	2.7	92
24	ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. American Journal of Physiology - Renal Physiology, 2014, 307, F1263-F1273.	2.7	87
25	Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia, 2009, 52, 1669-1679.	6.3	85
26	Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5689-5694.	7.1	82
27	ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in <i>Nos3</i> -Deficient Mice. Diabetes, 2015, 64, 3903-3913.	0.6	76
28	Costimulation by B7-1 and B7-2 Is Required for Autoimmune Disease in MRL-FaslprMice. Journal of Immunology, 2000, 164, 6046-6056.	0.8	75
29	Mineralocorticoid Receptor Signaling as a Therapeutic Target for Renal and Cardiac Fibrosis. Frontiers in Pharmacology, 2017, 8, 313.	3.5	74
30	Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia, 2007, 51, 198-207.	6.3	73
31	Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. American Journal of Physiology - Renal Physiology, 2013, 304, F1043-F1053.	2.7	63
32	A pathogenic role for JNK signaling in experimental anti-GBM glomerulonephritis. Kidney International, 2007, 72, 698-708.	5.2	61
33	Lymphocytes promote albuminuria, but not renal dysfunction or histological damage in a mouse model of diabetic renal injury. Diabetologia, 2010, 53, 1772-1782.	6.3	61
34	Kidney expression of glutathione peroxidase-1 is not protective against streptozotocin-induced diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2005, 289, F544-F551.	2.7	60
35	Myeloid Mineralocorticoid Receptor Activation Contributes to Progressive Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 2231-2240.	6.1	60
36	DEOXYSPERGUALIN SUPPRESSES LOCAL MACROPHAGE PROLIFERATION IN RAT RENAL ALLOGRAFT REJECTION. Transplantation, 1994, 58, 596-601.	1.0	58

#	Article	IF	Citations
37	Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Laboratory Investigation, 2009, 89, 470-484.	3.7	58
38	c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Laboratory Investigation, 2011, 91, 978-991.	3.7	54
39	Macrophage accumulation at a site of renal inflammation is dependent on the M-CSF/c-fms pathway. Journal of Leukocyte Biology, 2002, 72, 530-7.	3.3	54
40	Effects of free and bound insulin-like growth factors on proteoglycan metabolism in articular cartilage explants. Journal of Orthopaedic Research, 1992, 10, 14-22.	2.3	53
41	ASK1: a new therapeutic target for kidney disease. American Journal of Physiology - Renal Physiology, 2016, 311, F373-F381.	2.7	53
42	MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. American Journal of Physiology - Renal Physiology, 2007, 293, F1556-F1563.	2.7	51
43	Induction of MIF synthesis and secretion by tubular epithelial cells: A novel action of angiotensin II. Kidney International, 2003, 63, 1265-1275.	5.2	49
44	Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages. Endocrinology, 2016, 157, 3213-3223.	2.8	47
45	<scp>ASK</scp> 1 inhibitor treatment suppresses p38/ <scp>JNK</scp> signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis. Journal of Cellular and Molecular Medicine, 2018, 22, 4522-4533.	3.6	47
46	Aldosterone Induces Kidney Fibroblast Proliferation via Activation of Growth Factor Receptors and PI3K/MAPK Signalling. Nephron Experimental Nephrology, 2012, 120, e115-e122.	2.2	43
47	Interleukin-10 differentially modulates MHC class II expression by mesangial cells and macrophagesin vitroandin vivo. Immunology, 1998, 94, 72-78.	4.4	42
48	CD44-mediated neutrophil apoptosis in the rat. Kidney International, 2000, 58, 1920-1930.	5.2	40
49	Heterogeneity of antigen expression explains controversy over glomerular macrophage accumulation in mouse glomerulonephritis. Nephrology Dialysis Transplantation, 2003, 18, 178-181.	0.7	38
50	A novel method of microwave treatment for detection of cytoplasmic and nuclear antigens by flow cytometry. Journal of Immunological Methods, 1996, 190, 1-10.	1.4	37
51	Evaluation of JNK Blockade as an Early Intervention Treatment for Type 1 Diabetic Nephropathy in Hypertensive Rats. American Journal of Nephrology, 2011, 34, 337-346.	3.1	34
52	In vivo visualization of albumin degradation in the proximal tubule. Kidney International, 2008, 74, 1480-1486.	5.2	33
53	Recent Insights into Experimental Mouse Models of Diabetic Nephropathy. Nephron Experimental Nephrology, 2006, 104, e57-e62.	2.2	32
54	Effect of interleukin-10 treatment on crescentic glomerulonephritis in rats. Kidney International, 1997, 51, 1809-1817.	5.2	29

#	Article	IF	CITATIONS
55	<i>miR-378</i> reduces mesangial hypertrophy and kidney tubular fibrosis via MAPK signalling. Clinical Science, 2017, 131, 411-423.	4.3	27
56	Successes Achieved and Challenges Ahead in Translating Biomarkers into Clinical Applications. AAPS Journal, 2010, 12, 243-253.	4.4	26
57	Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes. Diabetologia, 2014, 57, 1977-1985.	6.3	26
58	MKK3 signalling plays an essential role in leukocyte-mediated pancreatic injury in the multiple low-dose streptozotocin model. Laboratory Investigation, 2008, 88, 398-407.	3.7	20
59	Interferon-gamma induces macrophage migration inhibitory factor synthesis and secretion by tubular epithelial cells. Nephrology, 2003, 8, 156-161.	1.6	19
60	Earlier onset of diabesityâ€Induced adverse cardiac remodeling in female compared to male mice. Obesity, 2015, 23, 1166-1177.	3.0	19
61	Myeloid cellâ€mediated renal injury in rapidly progressive glomerulonephritis depends upon spleen tyrosine kinase. Journal of Pathology, 2016, 238, 10-20.	4.5	19
62	Cyclophilin D promotes tubular cell damage and the development of interstitial fibrosis in the obstructed kidney. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 250-260.	1.9	18
63	c-Jun amino terminal kinase 1 deficient mice are protected from streptozotocin-induced islet injury. Biochemical and Biophysical Research Communications, 2008, 366, 710-716.	2.1	17
64	Lefty antagonises TGF- \hat{l}^21 induced epithelialâ \in "mesenchymal transition in tubular epithelial cells. Biochemical and Biophysical Research Communications, 2010, 393, 855-859.	2.1	17
65	LF15-0195 prevents the induction and inhibits the progression of rat anti-GBM disease. Kidney International, 2001, 60, 1354-1365.	5.2	14
66	Matrix metalloproteinaseâ€12 deficiency attenuates experimental crescentic antiâ€glomerular basement membrane glomerulonephritis. Nephrology, 2018, 23, 183-189.	1.6	13
67	Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628. PLoS ONE, 2015, 10, e0145666.	2.5	12
68	Macrophage accumulation and renal fibrosis are independent of macrophage migration inhibitory factor in mouse obstructive nephropathy. Nephrology, 2004, 9, 278-287.	1.6	10
69	Inhibition of Spleen Tyrosine Kinase Reduces Renal Allograft Injury in a Rat Model of Acute Antibody-Mediated Rejection in Sensitized Recipients. Transplantation, 2017, 101, e240-e248.	1.0	10
70	Establishing equivalent diabetes in male and female Nos3â€deficient mice results in a comparable onset of diabetic kidney injury. Physiological Reports, 2019, 7, e14197.	1.7	9
71	WNT1â€inducibleâ€signaling pathway protein 1 regulates the development of kidney fibrosis through the TGFâ€Î²1 pathway. FASEB Journal, 2020, 34, 14507-14520.	0.5	9
72	Up-regulation of the tumour-associated marker CD44V6 in experimental kidney disease. Clinical and Experimental Immunology, 2000, 121, 523-532.	2.6	8

#	Article	IF	CITATIONS
73	Treatment of Tissue Sections for <i>In Situ</i> i> Hybridization. , 2006, 326, 1-8.		8
74	Combined inhibition of CCR2 and ACE provides added protection against progression of diabetic nephropathy in <i>Nos3</i> -deficient mice. American Journal of Physiology - Renal Physiology, 2019, 317, F1439-F1449.	2.7	8
75	Pharmacological inhibition of proteaseâ€activated receptorâ€2 reduces crescent formation in rat nephrotoxic serum nephritis. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 456-464.	1.9	8
76	Targeting apoptosis signalâ€regulating kinase 1 in acute and chronic kidney disease. Anatomical Record, 2020, 303, 2553-2560.	1.4	8
77	Spleen tyrosine kinase contributes to acute renal allograft rejection in the rat. International Journal of Experimental Pathology, 2015, 96, 54-62.	1.3	7
78	c-Jun Amino Terminal Kinase Signaling Promotes Aristolochic Acid-Induced Acute Kidney Injury. Frontiers in Physiology, 2021, 12, 599114.	2.8	6
79	Novel mineralocorticoid receptor mechanisms regulate cardiac tissue inflammation in male mice. Journal of Endocrinology, 2020, 246, 123-134.	2.6	6
80	Role of interleukin-10 in rat mesangioproliferative glomerulonephritis. Nephrology, 2003, 8, 33-41.	1.6	5
81	Reduced tubular degradation of glomerular filtered plasma albumin is a common feature in acute and chronic kidney disease. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 241-249.	1.9	5
82	EGF and EGF-receptor expression in rat anti-Thy-1 mesangial proliferative nephritis. Nephrology, 1995, 1, 83-93.	1.6	4
83	Review article: Have emergency department timeâ€based targets influenced patient care? A systematic review of qualitative literature. EMA - Emergency Medicine Australasia, 2021, 33, 202-213.	1.1	4
84	WNT1-inducible signaling pathway protein 1 regulates kidney inflammation through the NF- $\hat{1}^{\text{P}}$ B pathway. Clinical Science, 2022, 136, 29-44.	4.3	4
85	Human peritoneal mesothelial cells isolated from spent dialysate fluid maintain contaminating macrophages via production of macrophage colony stimulating factor. Nephrology, 2007, 12, 160-165.	1.6	3
86	ASK1 is a novel molecular target for preventing aminoglycoside-induced hair cell death. Journal of Molecular Medicine, 2022, 100, 797-813.	3.9	3
87	Do macrophages participate in mesangial cell proliferation?. Nephrology, 1997, 3, 501-507.	1.6	2
88	Authors' reply:. American Journal of Kidney Diseases, 1999, 34, 765-767.	1.9	2
89	Combined interleukin 1 and tumour necrosis factor alpha blockade in rat crescentic anti-glomerular basement membrane glomerulonephritis. Nephrology, 2001, 6, 214-220.	1.6	2
90	Mice with Established Diabetes Show Increased Susceptibility to Renal Ischemia/Reperfusion Injury. American Journal of Pathology, 2022, 192, 441-453.	3.8	2

#	Article	IF	CITATIONS
91	Long-term anti-glomerular basement membrane disease in the rat: a model of chronic glomerulonephritis with nephrosis, hypertension and progressive renal failure. Nephrology, 2002, 7, 145-154.	1.6	1
92	MIF in the Pathogenesis of Kidney Disease. , 2007, , 153-168.		0
93	Proximal tubular epithelial cells preferentially endocytose covalentlyâ€modified albumin compared to native albumin. Nephrology, 2019, 24, 121-126.	1.6	O