Yannis L KalaÇdzidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5332889/publications.pdf

Version: 2024-02-01

109137 102304 7,757 81 35 66 citations g-index h-index papers 97 97 97 12157 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rab Conversion as a Mechanism of Progression from Early to Late Endosomes. Cell, 2005, 122, 735-749.	13.5	1,434
2	Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotechnology, 2013, 31, 638-646.	9.4	1,060
3	Objective comparison of particle tracking methods. Nature Methods, 2014, 11, 281-289.	9.0	805
4	The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature, 2006, 441, 115-119.	13.7	408
5	Systems survey of endocytosis by multiparametric image analysis. Nature, 2010, 464, 243-249.	13.7	407
6	Kinetics of Morphogen Gradient Formation. Science, 2007, 315, 521-525.	6.0	355
7	Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature, 2012, 485, 465-470.	13.7	322
8	Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature, 2009, 459, 1091-1097.	13.7	201
9	RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nature Cell Biology, 2003, 5, 195-204.	4.6	200
10	Signal processing by the endosomal system. Current Opinion in Cell Biology, 2016, 39, 53-60.	2.6	154
11	Regulation of Epidermal Growth Factor Receptor Trafficking by Lysine Deacetylase HDAC6. Science Signaling, 2009, 2, ra84.	1.6	140
12	An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature, 2016, 537, 107-111.	13.7	135
13	Membrane identity and GTPase cascades regulated by toggle and cutâ€out switches. Molecular Systems Biology, 2008, 4, 206.	3.2	117
14	Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes. ELife, 2015, 4,	2.8	93
15	APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology, 2015, 211, 123-144.	2.3	87
16	A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture. ELife, 2015, 4, .	2.8	84
17	Mammalian <scp>CORVET</scp> Is Required for Fusion and Conversion of Distinct Early Endosome Subpopulations. Traffic, 2014, 15, 1366-1389.	1.3	80
18	A Predictive 3D Multi-Scale Model of Biliary Fluid Dynamics in the Liver Lobule. Cell Systems, 2017, 4, 277-290.e9.	2.9	79

#	Article	IF	CITATIONS
19	Integration of Chemical and RNAi Multiparametric Profiles Identifies Triggers of Intracellular Mycobacterial Killing. Cell Host and Microbe, 2013, 13, 129-142.	5.1	74
20	Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Experimental Cell Research, 2017, 350, 242-252.	1.2	73
21	Molecular Insights into Rab7â€Mediated Endosomal Recruitment of Core Retromer: Deciphering the Role of Vps26 and Vps35. Traffic, 2015, 16, 68-84.	1.3	71
22	A General Theoretical Framework to Infer Endosomal Network Dynamics from Quantitative Image Analysis. Current Biology, 2012, 22, 1381-1390.	1.8	69
23	The Clathrin Adaptor Gga2p Is a Phosphatidylinositol 4-phosphate Effector at the Golgi Exit. Molecular Biology of the Cell, 2008, 19, 1991-2002.	0.9	66
24	Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth. Molecular Biology of the Cell, 2008, 19, 1046-1061.	0.9	64
25	Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E667-76.	3.3	63
26	Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. Journal of Cell Biology, 2022, 221, .	2.3	60
27	Age-Dependent Labeling and Imaging of Insulin Secretory Granules. Diabetes, 2013, 62, 3687-3696.	0.3	58
28	Identification of siRNA delivery enhancers by a chemical library screen. Nucleic Acids Research, 2015, 43, 7984-8001.	6.5	58
29	Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nature Medicine, 2019, 25, 1885-1893.	15.2	58
30	Correlative singleâ€molecule localization microscopy and electron tomography reveals endosome nanoscale domains. Traffic, 2019, 20, 601-617.	1.3	49
31	A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags. Scientific Reports, 2017, 7, 23.	1.6	43
32	The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hearing Research, 2008, 243, 95-104.	0.9	42
33	Liquid-crystal organization of liver tissue. ELife, 2019, 8, .	2.8	42
34	Intracellular objects tracking. European Journal of Cell Biology, 2007, 86, 569-578.	1.6	41
35	\hat{l}^2 2-Syntrophin Is a Cdk5 Substrate That Restrains the Motility of Insulin Secretory Granules. PLoS ONE, 2010, 5, e12929.	1.1	40
36	Multiple routes of endocytic internalization of PDGFRÎ ² contribute to PDGF-induced STAT3 signaling. Journal of Cell Science, 2017, 130, 577-589.	1.2	39

#	Article	IF	CITATIONS
37	SNX27–retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. Journal of Cell Biology, 2020, 219, .	2.3	38
38	Dynamin Inhibitors Impair Endocytosis and Mitogenic Signaling of <scp>PDGF</scp> . Traffic, 2013, 14, 725-736.	1.3	36
39	Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Letters, 1998, 427, 59-63.	1.3	35
40	BIOLOGISTICS AND THE STRUGGLE FOR EFFICIENCY: CONCEPTS AND PERSPECTIVES. International Journal of Modeling, Simulation, and Scientific Computing, 2009, 12, 533-548.	0.9	33
41	Regulation of Insulin Granule Turnover in Pancreatic \hat{I}^2 -Cells by Cleaved ICA512. Journal of Biological Chemistry, 2008, 283, 33719-33729.	1.6	32
42	Multiple objects tracking in fluorescence microscopy. Journal of Mathematical Biology, 2009, 58, 57-80.	0.8	32
43	Control of convergent yolk syncytial layer nuclear movement in zebrafish. Development (Cambridge), 2009, 136, 1305-1315.	1.2	30
44	A drug discovery platform to identify compounds that inhibit EGFR triple mutants. Nature Chemical Biology, 2020, 16, 577-586.	3.9	30
45	Bile canaliculi remodeling activates <scp>YAP</scp> via the actin cytoskeleton during liver regeneration. Molecular Systems Biology, 2020, 16, e8985.	3.2	29
46	Auto-regulation of Rab5 GEF activity in Rabex5 by allosteric structural changes, catalytic core dynamics and ubiquitin binding. ELife, 2019, 8, .	2.8	26
47	Retrograde transport of Akt by a neuronal Rab5-APPL1 endosome. Scientific Reports, 2019, 9, 2433.	1.6	24
48	Deducing the mechanism of action of compounds identified in phenotypic screens by integrating their multiparametric profiles with a reference genetic screen. Nature Protocols, 2014, 9, 474-490.	5.5	23
49	A segmentation method to obtain a complete geometry model of the hearing organ. Hearing Research, 2011, 282, 25-34.	0.9	22
50	Biochemical Characterization of APPL Endosomes: The Role of Annexin A2 in APPL Membrane Recruitment. Traffic, 2011, 12, 1227-1241.	1.3	19
51	The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. Molecular Metabolism, 2016, 5, 656-668.	3.0	19
52	A Spatial Model of Insulinâ€Granule Dynamics in Pancreatic βâ€Cells. Traffic, 2015, 16, 797-813.	1.3	16
53	A probabilistic method to quantify the colocalization of markers on intracellular vesicular structures visualized by light microscopy. AIP Conference Proceedings, 2015, , .	0.3	16
54	siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis. Journal of Lipid Research, 2008, 49, 2427-2440.	2.0	15

#	Article	IF	CITATIONS
55	Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. Journal of Cell Biology, 2021, 220, .	2.3	14
56	Recruitment of APPL1 to ubiquitin-rich aggresomes in response to proteasomal impairment. Experimental Cell Research, 2011, 317, 1093-1107.	1.2	13
57	Forebrain-specific loss of synaptic GABAA receptors results in altered neuronal excitability and synaptic plasticity in mice. Molecular and Cellular Neurosciences, 2016, 72, 101-113.	1.0	12
58	Resilience of three-dimensional sinusoidal networks in liver tissue. PLoS Computational Biology, 2020, 16, e1007965.	1.5	12
59	Automatic recognition and characterization of different non-parenchymal cells in liver tissue. , 2016, , .		9
60	Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Systems Biology, 2015, 9, 31.	3.0	6
61	Quantification of nematic cell polarity in three-dimensional tissues. PLoS Computational Biology, 2020, 16, e1008412.	1.5	6
62	Membrane potential stabilizes the O intermediate in liposomes containing bacteriorhodopsin. FEBS Letters, 1999, 459, 143-147.	1.3	5
63	Embryonic stem cells are devoid of macropinocytosis, a trafficking pathway for activin A in differentiated cells. Journal of Cell Science, 2021, 134, .	1.2	4
64	Revealing Molecular Mechanisms by Integrating High-Dimensional Functional Screens with Protein Interaction Data. PLoS Computational Biology, 2014, 10, e1003801.	1.5	3
65	Development of a Kinetic Assay for Late Endosome Movement. Journal of Biomolecular Screening, 2014, 19, 1070-1078.	2.6	2
66	Prediction of Multiple 3D Tissue Structures Based on Single-Marker Images Using Convolutional Neural Networks. , 2019, , .		2
67	Occupancy of two primary chloride-binding sites in Natronobacterium pharaonis halorhodopsin is a necessary condition for active anion transport. Biochemistry (Moscow), 2003, 68, 354-358.	0.7	1
68	A method for validation for clustering of phenotypic gene knockdown profiles using protein-protein interactions information. BMC Bioinformatics, 2009, 10, .	1.2	1
69	Statistical shape modeling of human cochlea: alignment and principal component analysis., 2013,,.		1
70	Revisiting the Generalization of Entropy for Non-positive Distribution: Application for Exponent Spectra Analysis., 2009,,.		0
71	System analysis of endocytosis by functional genomics and quantitative multi-parametric image analysis. New Biotechnology, 2010, 27, S2.	2.4	0
72	Intracellular Background Estimation for Quantitative Fluorescence Microscopy. Proceedings (mdpi), 2019, 33, 22.	0.2	0

#	Article	IF	CITATIONS
73	Inductive Process Modeling of Rab5-Rab7 Conversion in Endocytosis. Lecture Notes in Computer Science, 2013, , 265-280.	1.0	O
74	Basic Phenotypes of Endocytic System Recognized by Independent Phenotypes Analysis of a High-throughput Genomic Screen. , 2019, , .		0
75	High Throughput Image Analysis on PetaFLOPS Systems. , 2007, , 323-329.		O
76	Resilience of three-dimensional sinusoidal networks in liver tissue. , 2020, 16, e1007965.		0
77	Resilience of three-dimensional sinusoidal networks in liver tissue. , 2020, 16, e1007965.		O
78	Resilience of three-dimensional sinusoidal networks in liver tissue. , 2020, 16, e1007965.		0
79	Resilience of three-dimensional sinusoidal networks in liver tissue. , 2020, 16, e1007965.		0
80	Resilience of three-dimensional sinusoidal networks in liver tissue. , 2020, 16, e1007965.		0
81	Resilience of three-dimensional sinusoidal networks in liver tissue. , 2020, 16, e1007965.		0