List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5332769/publications.pdf Version: 2024-02-01

VA-FELL

#	Article	IF	CITATIONS
1	Filling the oxygen vacancies in Co ₃ O ₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy and Environmental Science, 2017, 10, 2563-2569.	30.8	859
2	Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nature Communications, 2018, 9, 1320.	12.8	658
3	Semiconducting Groupâ€15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angewandte Chemie - International Edition, 2016, 55, 1666-1669.	13.8	651
4	Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Advanced Materials, 2018, 30, 1705112.	21.0	599
5	Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 3375-3379.	30.8	528
6	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	13.6	485
7	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 2019, 10, 2807.	12.8	456
8	Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nature Communications, 2020, 11, 1029.	12.8	379
9	Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Small, 2018, 14, e1800136.	10.0	341
10	Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System. Angewandte Chemie - International Edition, 2018, 57, 9660-9664.	13.8	340
11	GeP ₃ : A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Nano Letters, 2017, 17, 1833-1838.	9.1	338
12	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 8691-8696.	13.8	337
13	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	12.8	334
14	Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannelâ€Containing Carbon Nanofibers. Angewandte Chemie - International Edition, 2019, 58, 14578-14583.	13.8	332
15	Ru Modulation Effects in the Synthesis of Unique Rod-like Ni@Ni ₂ P–Ru Heterostructures and Their Remarkable Electrocatalytic Hydrogen Evolution Performance. Journal of the American Chemical Society, 2018, 140, 2731-2734.	13.7	326
16	Zirconiumâ€Regulationâ€Induced Bifunctionality in 3D Cobalt–Iron Oxide Nanosheets for Overall Water Splitting. Advanced Materials, 2019, 31, e1901439.	21.0	306
17	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	11.2	297
18	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	24.0	277

#	Article	IF	CITATIONS
19	Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2022, 5, 66-73.	34.4	276
20	Selective CO ₂ Reduction on 2D Mesoporous Bi Nanosheets. Advanced Energy Materials, 2018, 8, 1801536.	19.5	274
21	Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio. Nature Communications, 2016, 7, 11488.	12.8	247
22	Photoelectrochemical Synthesis of Ammonia on the Aerophilic-Hydrophilic Heterostructure with 37.8% Efficiency. CheM, 2019, 5, 617-633.	11.7	241
23	Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Science Bulletin, 2018, 63, 1246-1253.	9.0	225
24	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 1019-1024.	13.8	224
25	Be ₂ C Monolayer with Quasiâ€Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie - International Edition, 2014, 53, 7248-7252.	13.8	223
26	FeB ₆ Monolayers: The Graphene-like Material with Hypercoordinate Transition Metal. Journal of the American Chemical Society, 2016, 138, 5644-5651.	13.7	219
27	Tuning the Selective Adsorption Site of Biomass on Co ₃ O ₄ by Ir Single Atoms for Electrosynthesis. Advanced Materials, 2021, 33, e2007056.	21.0	217
28	PdSeO ₃ Monolayer: Promising Inorganic 2D Photocatalyst for Direct Overall Water Splitting Without Using Sacrificial Reagents and Cocatalysts. Journal of the American Chemical Society, 2018, 140, 12256-12262.	13.7	216
29	Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility. Journal of Materials Chemistry C, 2016, 4, 2155-2159.	5.5	212
30	Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chemical Communications, 2019, 55, 2285-2288.	4.1	205
31	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	13.8	204
32	Dirac State in the FeB ₂ Monolayer with Graphene-Like Boron Sheet. Nano Letters, 2016, 16, 6124-6129.	9.1	200
33	Encapsulation of Ni ₃ Fe Nanoparticles in Nâ€Doped Carbon Nanotube–Grafted Carbon Nanofibers as Highâ€Efficiency Hydrogen Evolution Electrocatalysts. Advanced Functional Materials, 2018, 28, 1805828.	14.9	168
34	BN Pairs Enriched Defective Carbon Nanosheets for Ammonia Synthesis with High Efficiency. Small, 2019, 15, e1805029.	10.0	164
35	Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy and Environmental Science, 2021, 14, 6428-6440.	30.8	164
36	Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nature Communications, 2021, 12, 1580.	12.8	162

#	Article	IF	CITATIONS
37	Tailoring Competitive Adsorption Sites by Oxygenâ€Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Advanced Materials, 2022, 34, e2107185.	21.0	162
38	Fluorine-Doped Carbon Particles Derived from Lotus Petioles as High-Performance Anode Materials for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 21336-21344.	3.1	158
39	Mesoporous PdAg Nanospheres for Stable Electrochemical CO ₂ Reduction to Formate. Advanced Materials, 2020, 32, e2000992.	21.0	153
40	Atomically Precise Dinuclear Site Active toward Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 11317-11324.	13.7	153
41	Activity Origin and Design Principles for Oxygen Reduction on Dual-Metal-Site Catalysts: A Combined Density Functional Theory and Machine Learning Study. Journal of Physical Chemistry Letters, 2019, 10, 7760-7766.	4.6	149
42	Electrochemical synthesis of urea on MBenes. Nature Communications, 2021, 12, 4080.	12.8	147
43	Tuning the Electron Localization of Gold Enables the Control of Nitrogenâ€ŧoâ€Ammonia Fixation. Angewandte Chemie - International Edition, 2019, 58, 18604-18609.	13.8	146
44	Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 4933.	12.8	141
45	Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS ₂ monolayer. Journal of Materials Chemistry C, 2015, 3, 9603-9608.	5.5	135
46	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	34.4	132
47	Fabrication of Robust Covalent Organic Frameworks for Enhanced Visible-Light-Driven H ₂ Evolution. ACS Catalysis, 2021, 11, 2098-2107.	11.2	116
48	Gadoliniumâ€Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903833.	19.5	114
49	Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Advanced Materials, 2017, 29, 1700150.	21.0	112
50	Effective Interlayer Engineering of Two-Dimensional VOPO ₄ Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage. Nano Letters, 2017, 17, 6273-6279.	9.1	102
51	Electroactive Metal–Organic Frameworks as Emitters for Selfâ€Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie - International Edition, 2020, 59, 10446-10450.	13.8	96
52	PtTe Monolayer: Two-Dimensional Electrocatalyst with High Basal Plane Activity toward Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 12732-12735.	13.7	95
53	Cation Exchange Strategy to Single-Atom Noble-Metal Doped CuO Nanowire Arrays with Ultralow Overpotential for H ₂ O Splitting. Nano Letters, 2020, 20, 5482-5489.	9.1	93
54	The germanium telluride monolayer: a two dimensional semiconductor with high carrier mobility for photocatalytic water splitting. Journal of Materials Chemistry A, 2018, 6, 4119-4125.	10.3	87

#	Article	IF	CITATIONS
55	CoV ₂ O ₆ –V ₂ O ₅ Coupled with Porous N-Doped Reduced Graphene Oxide Composite as a Highly Efficient Electrocatalyst for Oxygen Evolution. ACS Energy Letters, 2017, 2, 1327-1333.	17.4	84
56	Rational design of dual-metal-site catalysts for electroreduction of carbon dioxide. Journal of Materials Chemistry A, 2020, 8, 15809-15815.	10.3	83
57	Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet. Journal of Physical Chemistry Letters, 2017, 8, 1707-1713.	4.6	81
58	Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Science Advances, 2020, 6, eaba9731.	10.3	78
59	Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study. Journal of Colloid and Interface Science, 2022, 607, 1005-1013.	9.4	78
60	Singleâ€Atom Inâ€Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading. Advanced Functional Materials, 2020, 30, 2004310.	14.9	77
61	Rapid exfoliation of layered covalent triazine-based frameworks into N-doped quantum dots for the selective detection of Hg ²⁺ ions. Journal of Materials Chemistry A, 2017, 5, 9272-9278.	10.3	76
62	Two-dimensional nanostructures of non-layered ternary thiospinels and their bifunctional electrocatalytic properties for oxygen reduction and evolution: the case of CuCo ₂ S ₄ nanosheets. Inorganic Chemistry Frontiers, 2016, 3, 1501-1509.	6.0	69
63	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, 18388-18393.	13.8	69
64	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	10.0	69
65	Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nature Communications, 2022, 13, 2039.	12.8	69
66	Ultrathin Layers of PdPX (X=S, Se): Two Dimensional Semiconductors for Photocatalytic Water Splitting. Chemistry - A European Journal, 2017, 23, 13612-13616.	3.3	66
67	Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution. Energy and Environmental Science, 2022, 15, 102-108.	30.8	66
68	Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide. Journal of Hazardous Materials, 2020, 391, 122199.	12.4	63
69	Review of twoâ€dimensional materials for electrochemical CO ₂ reduction from a theoretical perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1416.	14.6	59
70	Two-Dimensional Metal Hexahydroxybenzene Frameworks as Promising Electrocatalysts for an Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 7472-7479.	6.7	57
71	In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. Advanced Materials, 2020, 32, e2002382.	21.0	56
72	Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Research, 2021, 14, 4006-4013.	10.4	56

#	Article	IF	CITATIONS
73	Stabilizing and Activating Metastable Nickel Nanocrystals for Highly Efficient Hydrogen Evolution Electrocatalysis. ACS Nano, 2018, 12, 11625-11631.	14.6	55
74	Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System. Angewandte Chemie, 2018, 130, 9808-9812.	2.0	54
75	Insights into Hydrotropic Solubilization for Hybrid Ion Redox Flow Batteries. ACS Energy Letters, 2018, 3, 2641-2648.	17.4	54
76	Planar Hypercoordinate Motifs in Two-Dimensional Materials. Accounts of Chemical Research, 2020, 53, 887-895.	15.6	54
77	Engineering Mo/Mo ₂ C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 2020, 8, 8920-8926.	10.3	54
78	Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel ontaining Carbon Nanofibers. Angewandte Chemie, 2019, 131, 14720-14725.	2.0	53
79	Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Research, 2021, 14, 2790-2796.	10.4	53
80	Single Co Sites in Ordered SiO ₂ Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2022, 12, 2632-2638.	11.2	52
81	Band gap modulation of Janus graphene nanosheets by interlayer hydrogen bonding and the external electric field: a computational study. Journal of Materials Chemistry C, 2015, 3, 3416-3421.	5.5	50
82	Two-Dimensional C ₄ N Global Minima: Unique Structural Topologies and Nanoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 2669-2674.	3.1	49
83	Low Overpotential for Electrochemically Reducing CO ₂ to CO on Nitrogen-Doped Graphene Quantum Dots-Wrapped Single-Crystalline Gold Nanoparticles. ACS Energy Letters, 2018, 3, 946-951.	17.4	48
84	Phase-Controlled Synthesis of Pd–Se Nanocrystals for Phase-Dependent Oxygen Reduction Catalysis. Nano Letters, 2021, 21, 3805-3812.	9.1	46
85	Two-dimensional transition metal diborides: promising Dirac electrocatalysts with large reaction regions toward efficient N ₂ fixation. Journal of Materials Chemistry A, 2019, 7, 25887-25893.	10.3	45
86	Dopingâ€Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for Highâ€Temperature Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	14.9	45
87	Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Applied Microbiology and Biotechnology, 2018, 102, 2351-2361.	3.6	43
88	A Large-Scalable, Surfactant-Free, and Ultrastable Ru-Doped Pt ₃ Co Oxygen Reduction Catalyst. Nano Letters, 2021, 21, 6625-6632.	9.1	43
89	Two-Dimensional Biphenylene: A Graphene Allotrope with Superior Activity toward Electrochemical Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2021, 12, 12230-12234.	4.6	43
90	Spin–Orbit Coupling-Dominated Catalytic Activity of Two-Dimensional Bismuth toward CO ₂ Electroreduction: Not the Thinner the Better. Journal of Physical Chemistry Letters, 2019, 10, 4663-4667.	4.6	41

#	Article	IF	CITATIONS
91	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie, 2019, 131, 1031-1036.	2.0	41
92	Biocompatible Ruthenium Single-Atom Catalyst for Cascade Enzyme-Mimicking Therapy. ACS Applied Materials & Interfaces, 2021, 13, 45269-45278.	8.0	41
93	Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. National Science Review, 2020, 7, 1360-1366.	9.5	40
94	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 8827-8832.	2.0	37
95	Synthesis of KVPO ₄ F/Carbon Porous Single Crystalline Nanoplates for High-Rate Potassium-Ion Batteries. Nano Letters, 2022, 22, 4933-4940.	9.1	37
96	Pd ₂ Se ₃ monolayer: a novel two-dimensional material with excellent electronic, transport, and optical properties. Journal of Materials Chemistry C, 2018, 6, 4494-4500.	5.5	36
97	Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO ₂ reduction reaction. Chemical Science, 2022, 13, 6366-6372.	7.4	35
98	SnP ₂ S ₆ monolayer: a promising 2D semiconductor for photocatalytic water splitting. Physical Chemistry Chemical Physics, 2019, 21, 21064-21069.	2.8	30
99	TMC (TM = Co, Ni, and Cu) monolayers with planar pentacoordinate carbon and their potential applications. Journal of Materials Chemistry C, 2019, 7, 6406-6413.	5.5	29
100	Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N ₂ reduction reactions: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 9322-9329.	2.8	29
101	Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Science China Chemistry, 2021, 64, 1586-1595.	8.2	26
102	Significantly Enhanced Hydrogen Evolution Activity of Freestanding Pdâ€Ru Distorted Icosahedral Clusters with less than 600 Atoms. Chemistry - A European Journal, 2017, 23, 18203-18207.	3.3	24
103	Computational Study of Borophene with Line Defects as Sensors for Nitrogen-Containing Gas Molecules. ACS Applied Nano Materials, 2020, 3, 9961-9968.	5.0	24
104	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	2.0	24
105	Sn(101) Derived from Metal–Organic Frameworks for Efficient Electrocatalytic Reduction of CO ₂ . Inorganic Chemistry, 2021, 60, 9653-9659.	4.0	24
106	Self-Modulated Band Structure Engineering in C ₄ F Nanosheets: First-Principles Insights. Journal of Chemical Theory and Computation, 2014, 10, 1265-1271.	5.3	23
107	Tuning the activity of the inert MoS ₂ surface <i>via</i> graphene oxide support doping towards chemical functionalization and hydrogen evolution: a density functional study. Physical Chemistry Chemical Physics, 2018, 20, 1861-1871.	2.8	22
108	RuN ₂ Monolayer: A Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 54517-54523.	8.0	22

#	Article	IF	CITATIONS
109	Artificial Neuron Networks Enabled Identification and Characterizations of 2D Materials and van der Waals Heterostructures. ACS Nano, 2022, 16, 2721-2729.	14.6	22
110	Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal–organic frameworks. Dalton Transactions, 2017, 46, 8204-8218.	3.3	20
111	Highly Active and Selective Electrocatalytic CO ₂ Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. ACS Applied Materials & Interfaces, 2019, 11, 39722-39727.	8.0	20
112	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, 18559-18564.	2.0	20
113	Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction. Science China Materials, 2021, 64, 2997-3006.	6.3	20
114	Double boron atom-doped graphdiynes as efficient metal-free electrocatalysts for nitrogen reduction into ammonia: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 17683-17692.	2.8	19
115	Ti ₂ PTe ₂ monolayer: a promising two-dimensional anode material for sodium-ion batteries. RSC Advances, 2019, 9, 15536-15541.	3.6	18
116	Facet Engineering of Nanoceria for Enzyme-Mimetic Catalysis. ACS Applied Materials & Interfaces, 2022, 14, 21989-21995.	8.0	18
117	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie, 2022, 134, .	2.0	17
118	Study on the Structureâ€Activity Relationship Between Singleâ€Atom, Cluster and Nanoparticle Catalysts in a Hierarchical Structure for the Oxygen Reduction Reaction. Small, 2022, 18, e2105487.	10.0	16
119	Benzene-like N ₆ rings in a Be ₂ N ₆ monolayer: a stable 2D semiconductor with high carrier mobility. Journal of Materials Chemistry C, 2017, 5, 11515-11521.	5.5	15
120	Histone acetylation of oligodendrocytes protects against white matter injury induced by inflammation and hypoxia-ischemia through activation of BDNF-TrkB signaling pathway in neonatal rats. Brain Research, 2018, 1688, 33-46.	2.2	15
121	Single-atom catalysts: The role of intrinsic intermediate. Green Energy and Environment, 2020, 5, 4-5.	8.7	14
122	Sb ₂ TeSe ₂ Monolayers: Promising 2D Semiconductors for Highly Efficient Excitonic Solar Cells. ACS Omega, 2021, 6, 20590-20597.	3.5	14
123	Monoclinic Copper(I) Selenide Nanocrystals and Copper(I) Selenide/Palladium Heterostructures: Synthesis, Characterization, and Surface-Enhanced Raman Scattering Performance. European Journal of Inorganic Chemistry, 2015, 2015, 2229-2236.	2.0	13
124	Strain-Assisted Single Pt Sites on High-Curvature MoS ₂ Surface for Ultrasensitive H ₂ S Sensing. CCS Chemistry, 2022, 4, 3842-3851.	7.8	13
125	Lithium Vacancyâ€Tuned [CuO ₄] Sites for Selective CO ₂ Electroreduction to C ₂₊ Products. Small, 2022, 18, e2106433.	10.0	13
126	High-Performance Ni ₃ P Catalyst for Câ•O Hydrogenation of Ethyl Levulinate: Ni ^{l´+} as Outstanding Adsorption Sites. ACS Catalysis, 2022, 12, 7926-7935.	11.2	13

#	Article	IF	CITATIONS
127	2D Multiferroicity with Ferroelectric Switching Induced Spin-Constrained Photoelectricity. ACS Nano, 2022, 16, 11174-11181.	14.6	13
128	NiTe Monolayer: Two-Dimensional Metal with Superior Basal-Plane Activity for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 19164-19170.	3.1	12
129	Electronic and Magnetic Properties of BN Monolayer Sheets with H- or O-Saturated Vacancies: A First-Principles Study. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1513-1519.	0.4	10
130	Catalytic Hydrogenation of Nitrophenols by Cubic and Hexagonal Phase Unsupported Ni Nanocrystals. ChemistrySelect, 2019, 4, 42-48.	1.5	10
131	In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research, 2020, 2020, 5487237.	5.7	10
132	Fabrication of ternary UiO-66(Ce)/Ag/BiOBr heterojunction for enhanced photocatalytic degradation of ketoprofen via effective electron transfer process: Pathways, DFT calculation and mechanism. Chemosphere, 2022, 305, 135352.	8.2	10
133	Facile synthesis of highly monodisperse EuSe nanocubes with size-dependent optical/magnetic properties and their electrochemiluminescence performance. Nanoscale, 2018, 10, 13617-13625.	5.6	9
134	Tuning the Electron Localization of Gold Enables the Control of Nitrogenâ€ŧoâ€Ammonia Fixation. Angewandte Chemie, 2019, 131, 18777-18782.	2.0	8
135	Global minimum beryllium hydride sheet with novel negative Poisson's ratio: first-principles calculations. RSC Advances, 2018, 8, 19432-19436.	3.6	7
136	Activity Origin of Antimony Nanosheets toward Selective Electroreduction of CO ₂ to Formic Acid. Journal of Physical Chemistry C, 2022, 126, 4015-4023.	3.1	7
137	Synthesis and evaluation of novel N-3-benzimidazolephenylbisamide derivatives for antiproliferative and Hedgehog pathway inhibitory activity. MedChemComm, 2015, 6, 1137-1142.	3.4	6
138	Role of HMGB1 translocation to neuronal nucleus in rat model with septic brain injury. Neuroscience Letters, 2017, 645, 90-96.	2.1	5
139	Optimization of extraction technology of poly-mannuronic acid to a green delivery system for the water-insoluble pesticide, î»-Cyhalothrin. International Journal of Biological Macromolecules, 2020, 153, 17-25.	7.5	5
140	Advances in two dimensional electrochemical catalysts for ammonia synthesis. Chinese Science Bulletin, 2021, 66, 625-639.	0.7	5
141	Nano-H-ZSM-5 with Short <i>b</i> -Axis Channels as a Highly Efficient Catalyst for the Synthesis of Ethyl Levulinate from Furfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2022, 10, 3808-3816.	6.7	5
142	Preserving the edge magnetism of graphene nanoribbons by iodine termination: a computational study. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	2
143	Band-gap modulation of C4H nanosheets by interlayer weak interaction and external electric field: a computational study. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	2
144	Pentagonal PdX2 (X = S, Se) nanosheets with X vacancies as high-performance electrocatalysts for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, , .	2.8	2

#	Article	IF	CITATIONS
145	Graphene Nanoribbons: An Effective Approach to Achieve a Spin Gapless Semiconductor–Halfâ€Metal–Metal Transition in Zigzag Graphene Nanoribbons: Attaching A Floating Induced Dipole Field via <i>π</i> 〓 <i>π</i> Interactions (Adv. Funct. Mater. 12/2013). Advanced Functional Materials, 2013, 23, 1478-1478.	14.9	1
146	Frontispiece: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
147	Enhanced robustness of half-metallicity in VBr ₃ nanowires by strains and transition metal doping. Physical Chemistry Chemical Physics, 2020, 22, 24455-24461.	2.8	1
148	Innentitelbild: Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System (Angew. Chem. 31/2018). Angewandte Chemie, 2018, 130, 9702-9702.	2.0	0
149	Frontispiz: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, .	2.0	0