Bruce S Brunschwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5332197/publications.pdf Version: 2024-02-01

		36691	29333
129	12,120	53	108
papers	citations	h-index	g-index
132	132	132	15110
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Catalytic open-circuit passivation by thin metal oxide films of p-Si anodes in aqueous alkaline electrolytes. Energy and Environmental Science, 2022, 15, 334-345.	15.6	8
2	Experimental and Theoretical Comparison of Potential-dependent Methylation on Chemically Exfoliated WS ₂ and MoS ₂ . ACS Applied Materials & Interfaces, 2022, 14, 9744-9753.	4.0	2
3	Design of robust 2,2′-bipyridine ligand linkers for the stable immobilization of molecular catalysts on silicon(111) surfaces. Physical Chemistry Chemical Physics, 2021, 23, 9921-9929.	1.3	6
4	X-ray Photoelectron Spectroscopy and Resonant X-ray Spectroscopy Investigations of Interactions between Thin Metal Catalyst Films and Amorphous Titanium Dioxide Photoelectrode Protection Layers. Chemistry of Materials, 2021, 33, 1265-1275.	3.2	15
5	Origin of the Electrical Barrier in Electrolessly Deposited Platinum Nanoparticles on p-Si Surfaces. Journal of Physical Chemistry C, 2021, 125, 17660-17670.	1.5	6
6	GaAs Microisland Anodes Protected by Amorphous TiO ₂ Films Mitigate Corrosion Spreading During Water Oxidation in Alkaline Electrolytes. ACS Energy Letters, 2021, 6, 3709-3714.	8.8	7
7	Investigations of the stability of etched or platinized p-InP(100) photocathodes for solar-driven hydrogen evolution in acidic or alkaline aqueous electrolytes. Energy and Environmental Science, 2021, 14, 6007-6020.	15.6	33
8	Investigations of the stability of GaAs for photoelectrochemical H ₂ evolution in acidic or alkaline aqueous electrolytes. Journal of Materials Chemistry A, 2021, 9, 22958-22972.	5.2	9
9	CO ₂ Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination. ACS Energy Letters, 2020, 5, 470-476.	8.8	117
10	Reductant-Activated, High-Coverage, Covalent Functionalization of 1T′-MoS ₂ . , 2020, 2, 133-139.		21
11	Enhanced stability of silicon for photoelectrochemical water oxidation through self-healing enabled by an alkaline protective electrolyte. Energy and Environmental Science, 2020, 13, 4132-4141.	15.6	14
12	Failure modes of protection layers produced by atomic layer deposition of amorphous TiO ₂ on GaAs anodes. Energy and Environmental Science, 2020, 13, 4269-4279.	15.6	15
13	Atomic force microscopy: Emerging illuminated and <i>operando</i> techniques for solar fuel research. Journal of Chemical Physics, 2020, 153, 020902.	1.2	25
14	Surface Passivation and Positive Band-Edge Shift of p-Si(111) Surfaces Functionalized with Mixed Methyl/Trifluoromethylphenylacetylene Overlayers. Journal of Physical Chemistry C, 2020, 124, 16338-16349.	1.5	1
15	Si Microwire-Array Photocathodes Decorated with Cu Allow CO ₂ Reduction with Minimal Parasitic Absorption of Sunlight. ACS Energy Letters, 2020, 5, 2528-2534.	8.8	33
16	Conformal SnO _x heterojunction coatings for stabilized photoelectrochemical water oxidation using arrays of silicon microcones. Journal of Materials Chemistry A, 2020, 8, 9292-9301.	5.2	12
17	Enhanced Stability and Efficiency for Photoelectrochemical lodide Oxidation by Methyl Termination and Electrochemical Pt Deposition on n-Type Si Microwire Arrays. ACS Energy Letters, 2019, 4, 2308-2314.	8.8	4
18	Characterization of Electronic Transport through Amorphous TiO ₂ Produced by Atomic Layer Deposition. Journal of Physical Chemistry C, 2019, 123, 20116-20129.	1.5	68

#	Article	IF	CITATIONS
19	Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. Energy and Environmental Science, 2019, 12, 1241-1248.	15.6	78
20	Performance and failure modes of Si anodes patterned with thin-film Ni catalyst islands for water oxidation. Sustainable Energy and Fuels, 2018, 2, 983-998.	2.5	24
21	Fine-tuning polyoxometalate non-linear optical chromophores: a molecular electronic "Goldilocks― effect. Dalton Transactions, 2018, 47, 10415-10419.	1.6	18
22	Tin Oxide as a Protective Heterojunction with Silicon for Efficient Photoelectrochemical Water Oxidation in Strongly Acidic or Alkaline Electrolytes. Advanced Energy Materials, 2018, 8, 1801155.	10.2	34
23	Reduction of Aqueous CO ₂ to 1-Propanol at MoS ₂ Electrodes. Chemistry of Materials, 2018, 30, 4902-4908.	3.2	73
24	A Mechanistic Study of the Oxidative Reaction of Hydrogen-Terminated Si(111) Surfaces with Liquid Methanol. Journal of Physical Chemistry C, 2017, 121, 4270-4282.	1.5	16
25	Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology, 2017, 28, 095711.	1.3	58
26	Nanoelectrical and Nanoelectrochemical Imaging of Pt/pâ€ 5 i and Pt/p ⁺ â€ 5 i Electrodes. ChemSusChem, 2017, 10, 4657-4663.	3.6	13
27	Operando X-ray photoelectron spectroscopic investigations of the electrochemical double layer at Ir/KOH(aq) interfaces. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 99-105.	0.8	10
28	Ferrocenyl helquats: unusual chiral organometallic nonlinear optical chromophores. Dalton Transactions, 2017, 46, 1052-1064.	1.6	19
29	Comparative Study in Acidic and Alkaline Media of the Effects of pH and Crystallinity on the Hydrogen-Evolution Reaction on MoS ₂ and MoSe ₂ . ACS Energy Letters, 2017, 2, 2234-2238.	8.8	78
30	Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H ₂ SO ₄ . Energy and Environmental Science, 2017, 10, 2103-2108.	15.6	158
31	Organoimido-Polyoxometalate Nonlinear Optical Chromophores: A Structural, Spectroscopic, and Computational Study. Inorganic Chemistry, 2017, 56, 10181-10194.	1.9	31
32	Photoelectrochemical Behavior of a Molecular Ru-Based Water-Oxidation Catalyst Bound to TiO ₂ -Protected Si Photoanodes. Journal of the American Chemical Society, 2017, 139, 11345-11348.	6.6	56
33	Tunable Chiral Second-Order Nonlinear Optical Chromophores Based on Helquat Dications. Journal of Physical Chemistry A, 2017, 121, 5842-5855.	1.1	11
34	Immobilization and electrochemical properties of ruthenium and iridium complexes on carbon electrodes. Journal of Physics Condensed Matter, 2016, 28, 094002.	0.7	6
35	PeakForce Scanning Electrochemical Microscopy with Nanoelectrode Probes. Microscopy Today, 2016, 24, 18-25.	0.2	32
36	Rhenium(I) Tricarbonyl Complexes with Peripheral N-Coordination Sites: A Foundation for Heterotrimetallic Nonlinear Optical Chromophores. Organometallics, 2016, 35, 3014-3024.	1.1	19

#	Article	IF	CITATIONS
37	Control of the Band-Edge Positions of Crystalline Si(111) by Surface Functionalization with 3,4,5-Trifluorophenylacetylenyl Moieties. Journal of Physical Chemistry C, 2016, 120, 14157-14169.	1.5	34
38	Operando Analyses of Solar Fuels Light Absorbers and Catalysts. Electrochimica Acta, 2016, 211, 711-719.	2.6	23
39	An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO ₂ /Ni/Electrolyte Interfaces. Journal of the Electrochemical Society, 2016, 163, H139-H146.	1.3	24
40	Nickel–Gallium-Catalyzed Electrochemical Reduction of CO ₂ to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 2016, 6, 2100-2104.	5.5	238
41	Helquat Dyes: Helicene-like Push–Pull Systems with Large Second-Order Nonlinear Optical Responses. Journal of Organic Chemistry, 2016, 81, 1912-1920.	1.7	60
42	Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO ₂ /Si Heterojunctions. Journal of Physical Chemistry C, 2016, 120, 3117-3129.	1.5	77
43	570 mV photovoltage, stabilized n-Si/CoO _x heterojunction photoanodes fabricated using atomic layer deposition. Energy and Environmental Science, 2016, 9, 892-897.	15.6	137
44	Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. Catalysis Today, 2016, 262, 11-23.	2.2	87
45	A scanning probe investigation of the role of surface motifs in the behavior of p-WSe ₂ photocathodes. Energy and Environmental Science, 2016, 9, 164-175.	15.6	33
46	Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy and Environmental Science, 2015, 8, 2409-2416.	15.6	149
47	Microwave Near-Field Imaging of Two-Dimensional Semiconductors. Nano Letters, 2015, 15, 1122-1127.	4.5	42
48	Use of Mixed CH ₃ –/HC(O)CH ₂ CH ₂ –Si(111) Functionality to Control Interfacial Chemical and Electronic Properties During the Atomic-Layer Deposition of Ultrathin Oxides on Si(111). Journal of Physical Chemistry Letters, 2015, 6, 722-726.	2.1	19
49	Stable Solar-Driven Water Oxidation to O ₂ (g) by Ni-Oxide-Coated Silicon Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 592-598.	2.1	144
50	Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3612-3617.	3.3	180
51	Synthesis and Characterization of Atomically Flat Methyl-Terminated Ge(111) Surfaces. Journal of the American Chemical Society, 2015, 137, 9006-9014.	6.6	18
52	The Influence of Structure and Processing on the Behavior of TiO ₂ Protective Layers for Stabilization of n-Si/TiO ₂ /Ni Photoanodes for Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 15189-15199.	4.0	114
53	Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy and Environmental Science, 2015, 8, 2644-2649.	15.6	130
54	Synthesis, Characterization, and Reactivity of Ethynyl- and Propynyl-Terminated Si(111) Surfaces. Journal of Physical Chemistry C, 2015, 119, 19847-19862.	1.5	26

#	Article	IF	CITATIONS
55	Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n ⁺ p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H ₂ (g). Journal of Physical Chemistry Letters, 2015, 6, 1679-1683.	2.1	60
56	A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces. Thin Solid Films, 2015, 586, 28-34.	0.8	11
57	Nonlinear Optical Chromophores with Two Ferrocenyl, Octamethylferrocenyl, or 4-(Diphenylamino)phenyl Groups Attached to Rhenium(I) or Zinc(II) Centers. Organometallics, 2015, 34, 1701-1715.	1.1	26
58	Sputtered NiO <i>_x</i> Films for Stabilization of p ⁺ nâ€InP Photoanodes for Solarâ€Driven Water Oxidation. Advanced Energy Materials, 2015, 5, 1402276.	10.2	71
59	Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis. Surface Science, 2015, 631, 285-294.	0.8	22
60	Comparison between the measured and modeled hydrogen-evolution activity of Ni- or Pt-coated silicon photocathodes. International Journal of Hydrogen Energy, 2014, 39, 16220-16226.	3.8	13
61	Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils. Journal of Electroanalytical Chemistry, 2014, 716, 45-48.	1.9	51
62	Amorphous TiO ₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science, 2014, 344, 1005-1009.	6.0	1,189
63	Earth-abundant hydrogen evolution electrocatalysts. Chemical Science, 2014, 5, 865-878.	3.7	636
64	Catalysis of Proton Reduction by a [BO ₄]-Bridged Dicobalt Glyoxime. Inorganic Chemistry, 2014, 53, 12668-12670.	1.9	25
65	Operation of lightly doped Si microwires under high-level injection conditions. Energy and Environmental Science, 2014, 7, 2329-2338.	15.6	8
66	Assembly, characterization, and electrochemical properties of immobilized metal bipyridyl complexes on silicon(111) surfaces. Dalton Transactions, 2014, 43, 15004-15012.	1.6	33
67	Stabilization of n-cadmium telluride photoanodes for water oxidation to O ₂ (g) in aqueous alkaline electrolytes using amorphous TiO ₂ films formed by atomic-layer deposition. Energy and Environmental Science, 2014, 7, 3334-3337.	15.6	111
68	Synthesis, Structures, and Optical Properties of Ruthenium(II) Complexes of the Tris(1-pyrazolyl)methane Ligand. Inorganic Chemistry, 2014, 53, 3798-3811.	1.9	12
69	Photoelectrochemical Behavior of Hierarchically Structured Si/WO ₃ Core–Shell Tandem Photoanodes. Nano Letters, 2014, 14, 2310-2317.	4.5	78
70	Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO ₂ /Ni Coatings. Journal of Physical Chemistry C, 2014, 118, 19618-19624.	1.5	129
71	Pentamethylcyclopentadienyl rhodium complexes. Polyhedron, 2014, 84, 14-18.	1.0	32
72	Photoelectrochemical oxidation of anions by WO3 in aqueous and nonaqueous electrolytes. Energy and Environmental Science, 2013, 6, 2646.	15.6	57

#	Article	IF	CITATIONS
73	Redox Properties of Mixed Methyl/Vinylferrocenyl Monolayers on Si(111) Surfaces. Journal of Physical Chemistry C, 2013, 117, 27012-27022.	1.5	29
74	Measurement of the Band Bending and Surface Dipole at Chemically Functionalized Si(111)/Vacuum Interfaces. Journal of Physical Chemistry C, 2013, 117, 18031-18042.	1.5	85
75	Electrical Junction Behavior of Poly(3,4-ethylenedioxythiophene) (PEDOT) Contacts to H-Terminated and CH ₃ -Terminated p-, n-, and n ⁺ -Si(111) Surfaces. Journal of Physical Chemistry C, 2013, 117, 14485-14492.	1.5	22
76	Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production. Journal of the American Chemical Society, 2013, 135, 18288-18291.	6.6	196
77	Heptametallic, Octupolar Nonlinear Optical Chromophores with Six Ferrocenyl Substituents. Chemistry - A European Journal, 2013, 19, 6613-6629.	1.7	31
78	Heck Coupling of Olefins to Mixed Methyl/Thienyl Monolayers on Si(111) Surfaces. Journal of the American Chemical Society, 2013, 135, 10081-10090.	6.6	49
79	A Comparison of the Behavior of Single Crystalline and Nanowire Array ZnO Photoanodes. Journal of Physical Chemistry C, 2013, 117, 2008-2015.	1.5	27
80	Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2013, 4, 4188-4191.	2.1	116
81	Electrical and Photoelectrochemical Properties of WO ₃ /Si Tandem Photoelectrodes. Journal of Physical Chemistry C, 2013, 117, 6949-6957.	1.5	78
82	Photoanodic behavior of vapor-liquid-solid–grown, lightly doped, crystalline Si microwire arrays. Energy and Environmental Science, 2012, 5, 6867.	15.6	29
83	Comparison of the Photoelectrochemical Behavior of H-Terminated and Methyl-Terminated Si(111) Surfaces in Contact with a Series of One-Electron, Outer-Sphere Redox Couples in CH ₃ CN. Journal of Physical Chemistry C, 2012, 116, 23569-23576.	1.5	64
84	Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15589-15593.	3.3	102
85	A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy and Environmental Science, 2012, 5, 5694.	15.6	273
86	Control of the pH-Dependence of the Band Edges of Si(111) Surfaces Using Mixed Methyl/Allyl Monolayers. Journal of Physical Chemistry C, 2011, 115, 8594-8601.	1.5	33
87	Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays. Journal of the American Chemical Society, 2011, 133, 1216-1219.	6.6	561
88	Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy and Environmental Science, 2011, 4, 3573.	15.6	440
89	Ferrocenyl Diquat Derivatives: Nonlinear Optical Activity, Multiple Redox States, and Unusual Reactivity. Organometallics, 2011, 30, 5731-5743.	1.1	33
90	Combining Very Large Quadratic and Cubic Nonlinear Optical Responses in Extended, Tris-Chelate Metallochromophores with Six I€-Conjugated Pyridinium Substituents. Journal of the American Chemical Society, 2010, 132, 3496-3513.	6.6	61

#	Article	IF	CITATIONS
91	Quadratic and Cubic Nonlinear Optical Properties of Salts of Diquat-Based Chromophores with Diphenylamino Substituents. Journal of Physical Chemistry A, 2010, 114, 12028-12041.	1.1	35
92	Syntheses and Properties of Two-Dimensional, Dicationic Nonlinear Optical Chromophores Based on Pyrazinyl Cores. Journal of Organic Chemistry, 2010, 75, 8550-8563.	1.7	30
93	Synthesis and Characterization of Mixed Methyl/Allyl Monolayers on Si(111). Journal of Physical Chemistry B, 2010, 114, 14298-14302.	1.2	55
94	Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability. Journal of the American Chemical Society, 2010, 132, 10498-10512.	6.6	94
95	The syntheses, structures and nonlinear optical and related properties of salts with julolidinyl electron donor groups. Dyes and Pigments, 2009, 82, 171-186.	2.0	41
96	Hydrogen Evolution Catalyzed by Cobaloximes. Accounts of Chemical Research, 2009, 42, 1995-2004.	7.6	946
97	Infrared Vibrational Spectroscopy of Isotopically Labeled Ethyl-Terminated Si(111) Surfaces Prepared Using a Two-Step Chlorination/Alkylation Procedure. Journal of Physical Chemistry C, 2009, 113, 15239-15245.	1.5	28
98	Syntheses and Properties of Salts of Chromophores with Ferrocenyl Electron Donor Groups and Quaternary Nitrogen Acceptors. Organometallics, 2009, 28, 6880-6892.	1.1	34
99	Syntheses and Properties of Heterobimetallic Ligand-Bridged Ruthenium(II)/Rhenium(I) Complexes and Their Monometallic Congeners. Organometallics, 2008, 27, 2730-2742.	1.1	12
100	Passivation and Secondary Functionalization of Allyl-Terminated Si(111) Surfaces. Chemistry of Materials, 2008, 20, 2228-2233.	3.2	46
101	Phosphine Functionalization of GaAs(111)A Surfaces. Journal of Physical Chemistry C, 2008, 112, 18467-18473.	1.5	13
102	Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes. Journal of the American Chemical Society, 2007, 129, 8988-8998.	6.6	631
103	Characterization of transient species and products in photochemical reactions of Re(dmb) (CO)3 Et with and without CO2. Research on Chemical Intermediates, 2007, 33, 27-36.	1.3	13
104	Syntheses and Quadratic Nonlinear Optical Properties of Salts Containing Benzothiazolium Electron-Acceptor Groups. Chemistry of Materials, 2006, 18, 5907-5918.	3.2	108
105	High-Resolution X-ray Photoelectron Spectroscopy of Chlorine-Terminated GaAs(111)A Surfaces. Journal of Physical Chemistry B, 2006, 110, 15641-15644.	1.2	17
106	High-Resolution Soft X-ray Photoelectron Spectroscopic Studies and Scanning Auger Microscopy Studies of the Air Oxidation of Alkylated Silicon(111) Surfaces. Journal of Physical Chemistry B, 2006, 110, 23450-23459.	1.2	57
107	Chemical and Electrical Passivation of Silicon (111) Surfaces through Functionalization with Sterically Hindered Alkyl Groups. Journal of Physical Chemistry B, 2006, 110, 14800-14808.	1.2	114
108	Covalent Attachment of Acetylene and Methylacetylene Functionality to Si(111) Surfaces: Scaffolds for Organic Surface Functionalization while Retaining Siâ^'C Passivation of Si(111) Surface Sites. Journal of the American Chemical Society, 2006, 128, 9990-9991.	6.6	66

#	Article	IF	CITATIONS
109	Molecular Salts with Diquat-Based Electron Acceptors for Nonlinear Optics. Journal of the American Chemical Society, 2005, 127, 3284-3285.	6.6	50
110	High-Resolution X-ray Photoelectron Spectroscopic Studies of Alkylated Silicon(111) Surfaces. Journal of Physical Chemistry B, 2005, 109, 3930-3937.	1.2	101
111	Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chemical Communications, 2005, , 4723.	2.2	256
112	Anchoring Group and Auxiliary Ligand Effects on the Binding of Ruthenium Complexes to Nanocrystalline TiO2Photoelectrodes. Journal of Physical Chemistry B, 2004, 108, 15640-15651.	1.2	117
113	Using the Marcus Inverted Region for Rectification in Donorâ^'Bridgeâ^'Acceptor "Wire―Assemblies. Journal of Physical Chemistry B, 2003, 107, 10687-10690.	1.2	7
114	Highly Unusual Effects of π-Conjugation Extension on the Molecular Linear and Quadratic Nonlinear Optical Properties of Ruthenium(II) Ammine Complexes. Journal of the American Chemical Society, 2003, 125, 862-863.	6.6	133
115	Involvement of a Binuclear Species with the Reâ [°] C(O)Oâ [°] Re Moiety in CO2 Reduction Catalyzed by Tricarbonyl Rhenium(I) Complexes with Diimine Ligands:  Strikingly Slow Formation of the Reâ [°] Re and Reâ [°] C(O)Oâ [°] Re Species from Re(dmb)(CO)3S (dmb = 4,4â€ [°] -Dimethyl-2,2â€ [°] -bipyridine, S = Solvent). Journal of the American Chemical Society. 2003. 125. 11976-11987.	6.6	291
116	Determination of the molecular quadratic non-linear optical responses of V-shaped metallochromophores by using Stark spectroscopyElectronic supplementary information (ESI) available: Experimental details. See http://www.rsc.org/suppdata/dt/b3/b304085b/. Dalton Transactions, 2003, , 2384.	1.6	14
117	Molecular quadratic non-linear optical properties of dipolar trans-tetraammineruthenium(ii) complexes with pyridinium and thiocyanate ligands. Dalton Transactions, 2003, , 2335.	1.6	23
118	Molecular quadratic nonlinear optical properties of dipolar ruthenium(II) arsine complexes. , 2003, 5212, 332.		0
119	Electroabsorption Spectroscopic Studies of Dipolar Ruthenium(II) Complexes Possessing Large Quadratic Nonlinear Optical Responses. Journal of Physical Chemistry A, 2002, 106, 897-905. Optical transitions of symmetrical mixed-valence systems in the Class Il–III transition	1.1	61
120	regimeElectronic supplementary information (ESI) is available: derivation of eqn. (39c), table summarizing the relationships between band maxima and band widths predicted by the two-state model and table of spectral properties of mixed-valence ruthenium(II)/(III) bridged by pyrazine and dicyanamide. See http://www.rsc.org/suppdata/cs/b0/b008034i/. Chemical Society Reviews, 2002, 31,	18.7	770
121	168-184. A comparison of the pentaammine(pyridyl)ruthenium(ii) and 4-(dimethylamino)phenyl groups as electron donors for quadratic non-linear optics. Chemical Communications, 2001, , 1548-1549.	2.2	28
122	Reversible Formation of Bis(2,2â€~-bipyridine)rhodium(III) Dihydride from Bis(2,2â€~-bipyridine)rhodium(I) and Dihydrogen. Direct Transfer of Dihydrogen from Rhodium(III) Dihydride to Rhodium(I). Journal of the American Chemical Society, 1998, 120, 10553-10554.	6.6	23
123	Electroabsorption Spectroscopy of Charge-Transfer States of Transition-Metal Complexes. 2. Metal-to-Ligand and Ligand-to-Metal Charge-Transfer Excited States of Pentaammineruthenium Complexes1. The Journal of Physical Chemistry, 1996, 100, 8157-8169.	2.9	137
124	Orbital Analysis of Metal-to-Ligand Charge Transfer and Oxidation in (NH3)5RuL2+Complexes:Â Effective t2gOrbital Ordering and the Role of Ligand π and π* Orbitals. The Journal of Physical Chemistry, 1996, 100, 1104-1110.	2.9	46
125	Toward photochemical carbon dioxide activation by transition metal complexes. Coordination Chemistry Reviews, 1994, 132, 195-200.	9.5	88

Photophysical properties of covalently attached tris(bipyridine)ruthenium(2+) and Mcyclam2+ (M =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{126}{38}$

#	Article	IF	CITATIONS
127	Some Aspects of Electron Transfer in Biological Systems. Advances in Chemistry Series, 1989, , 65-88.	0.6	14
128	Rate-Constant Expressions for Nonadiabatic Electron-Transfer Reactions. Comments on Inorganic Chemistry, 1987, 6, 209-235.	3.0	73
129	Electron Transfer in Weakly Interacting Systems. ACS Symposium Series, 1982, , 105-135.	0.5	40