Roberto R Ricardo-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5332066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrophage-specific PPARÎ ³ controls alternative activation and improves insulin resistance. Nature, 2007, 447, 1116-1120.	13.7	1,804
2	Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis. Science, 2011, 332, 243-247.	6.0	1,156
3	Alternative M2 Activation of Kupffer Cells by PPARδAmeliorates Obesity-Induced Insulin Resistance. Cell Metabolism, 2008, 7, 496-507.	7.2	752
4	Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell, 2017, 169, 1119-1129.e11.	13.5	477
5	Tissue signals imprint ILC2 identity with anticipatory function. Nature Immunology, 2018, 19, 1093-1099.	7.0	329
6	PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nature Medicine, 2009, 15, 1266-1272.	15.2	316
7	IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proceedings of the United States of America, 2010, 107, 22617-22622.	3.3	210
8	Tissue-Resident Group 2 Innate Lymphoid Cells Differentiate by Layered Ontogeny and In Situ Perinatal Priming. Immunity, 2019, 50, 1425-1438.e5.	6.6	179
9	Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature, 2021, 592, 128-132.	13.7	119
10	Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. Journal of Experimental Medicine, 2020, 217, .	4.2	69
11	Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Science Immunology, 2022, 7, eabl9165.	5.6	53
12	Skin-Resident Innate Lymphoid Cells – Cutaneous Innate Guardians and Regulators. Trends in Immunology, 2020, 41, 100-112.	2.9	45
13	Single-Cell Profiling Reveals Divergent, Globally Patterned Immune Responses in Murine Skin Inflammation. IScience, 2020, 23, 101582.	1.9	30
14	A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes. Developmental Biology, 2008, 317, 380-388.	0.9	27
15	Quantitative expansion of ES cell-derived myeloid progenitors capable of differentiating into macrophages. Journal of Leukocyte Biology, 2007, 81, 711-719.	1.5	25
16	Bile acid–sensitive tuft cells regulate biliary neutrophil influx. Science Immunology, 2022, 7, eabj1080.	5.6	23
17	CISH constrains the tuft–ILC2 circuit to set epithelial and immune tone. Mucosal Immunology, 2021, 14, 1295-1305	2.7	16
18	A role for IL-33–activated ILC2s in eosinophilic vasculitis. JCI Insight, 2021, 6, .	2.3	12

#	Article	IF	CITATIONS
19	A case of Wong-type dermatomyositis with concomitant anti-MDA5 features. Journal of the American Academy of Dermatology, 2014, 70, e62-e64.	0.6	8
20	Neutrophil-rich subcutaneous fat necrosis of the newborn: A potential mimic of infection. Journal of the American Academy of Dermatology, 2016, 75, 177-185.e17.	0.6	7
21	ILC2s – development, divergence, dispersal. Current Opinion in Immunology, 2022, 75, 102168.	2.4	6
22	ILC2s chew the fat. Journal of Experimental Medicine, 2019, 216, 1972-1973.	4.2	0