List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331815/publications.pdf Version: 2024-02-01

Ιίνα Μανισεί

#	Article	IF	CITATIONS
1	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211
2	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
3	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, 2015, 91, .	4.7	674
4	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	4.0	644
5	DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES. Astrophysical Journal, 2012, 759, 52.	4.5	613
6	The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars. Astrophysical Journal Letters, 2017, 848, L27.	8.3	507
7	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
8	THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES. Astrophysical Journal, 2011, 741, 103.	4.5	383
9	Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA. Classical and Quantum Gravity, 2007, 24, R113-R169.	4.0	382
10	Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2634-2647.	4.4	381
11	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
12	DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES. Astrophysical Journal, 2015, 806, 263.	4.5	336
13	DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES. Astrophysical Journal, 2013, 779, 72.	4.5	334
14	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	4.0	287
15	The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3545-3553.	4.4	282
16	Formation of the first three gravitational-wave observations through isolated binary evolution. Nature Communications, 2017, 8, 14906.	12.8	270
17	Extracting distribution parameters from multiple uncertain observations with selection biases. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1086-1093.	4.4	217
18	Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature, 2017, 548, 426-429.	27.8	208

#	Article	IF	CITATIONS
19	The effect of the metallicity-specific star formation history on double compact object mergers. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3740-3759.	4.4	192
20	On the formation history of Galactic double neutron stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4009-4029.	4.4	189
21	Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1919-1937.	4.4	187
22	The optical afterglow of the short gamma-ray burst associated with GW170817. Nature Astronomy, 2018, 2, 751-754.	10.1	185
23	THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. Astrophysical Journal, 2014, 795, 105.	4.5	159
24	The origin of spin in binary black holes. Astronomy and Astrophysics, 2020, 635, A97.	5.1	155
25	Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2801-2811.	4.4	152
26	Compact binary coalescences in the band of ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 114007.	4.0	146
27	Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds. Science, 2021, 371, 1046-1049.	12.6	138
28	Cosmology using advanced gravitational-wave detectors alone. Physical Review D, 2012, 85, .	4.7	127
29	GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP. Astrophysical Journal Letters, 2016, 829, L15.	8.3	126
30	The Optical Afterglow of GW170817 at One Year Post-merger. Astrophysical Journal Letters, 2019, 870, L15.	8.3	120
31	PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA. Astrophysical Journal, 2015, 804, 114.	4.5	117
32	Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2016, 456, 578-581.	4.4	114
33	The Environment of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 848, L28.	8.3	114
34	The Impact of Pair-instability Mass Loss on the Binary Black Hole Mass Distribution. Astrophysical Journal, 2019, 882, 121.	4.5	114
35	Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Classical and Quantum Gravity, 2009, 26, 165008.	4.0	110
36	Rates of compact object coalescences. Living Reviews in Relativity, 2022, 25, 1.	26.7	102

#	Article	IF	CITATIONS
37	The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817. Astrophysical Journal Letters, 2017, 848, L31.	8.3	100
38	Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4685-4695.	4.4	100
39	The Gravity Probe B test of general relativity. Classical and Quantum Gravity, 2015, 32, 224001.	4.0	99
40	A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations ^{â^—} . Astrophysical Journal Letters, 2018, 854, L31.	8.3	99
41	THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES. Astrophysical Journal, 2014, 789, 120.	4.5	98
42	Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo. Classical and Quantum Gravity, 2008, 25, 184011.	4.0	95
43	Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO. Astrophysical Journal, 2008, 681, 1431-1447.	4.5	93
44	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
45	Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries. Astrophysical Journal, 2008, 688, L61-L64.	4.5	89
46	Age dissection of the Milky Way discs: Red giants in the <i>Kepler</i> field. Astronomy and Astrophysics, 2021, 645, A85.	5.1	85
47	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
48	Impact of massive binary star and cosmic evolution on gravitational wave observations I: black hole–neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5028-5063.	4.4	83
49	Constraining the masses of microlensing black holes and the mass gap with <i>Gaia</i> DR2. Astronomy and Astrophysics, 2020, 636, A20.	5.1	81
50	Prospects for Detection of Gravitational Waves from Intermediate-Mass-Ratio Inspirals. Physical Review Letters, 2007, 99, 201102.	7.8	79
51	Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Physical Review D, 2012, 85, .	4.7	79
52	Exploring intermediate and massive black-hole binaries with the Einstein Telescope. General Relativity and Gravitation, 2011, 43, 485-518.	2.0	77
53	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	4.5	72
54	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	5.1	70

#	Article	IF	CITATIONS
55	Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation. Physical Review D, 2013, 88, .	4.7	69
56	Ultra-luminous X-ray sources and neutron-star–black-hole mergers from very massive close binaries at low metallicity. Astronomy and Astrophysics, 2017, 604, A55.	5.1	69
57	PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS. Astrophysical Journal, 2016, 825, 116.	4.5	68
58	Cosmic rates of black hole mergers and pair-instability supernovae from chemically homogeneous binary evolution. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5941-5959.	4.4	65
59	The Mock LISA Data Challenges: from Challenge 1B to Challenge 3. Classical and Quantum Gravity, 2008, 25, 184026.	4.0	64
60	Merging stellar-mass binary black holes. Physics Reports, 2022, 955, 1-24.	25.6	64
61	Double Neutron Star Populations and Formation Channels. Astrophysical Journal Letters, 2019, 880, L8.	8.3	63
62	Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Physical Review D, 2012, 85, .	4.7	62
63	Parameter estimation on gravitational waves from multiple coalescing binaries. Physical Review D, 2010, 81, .	4.7	60
64	Simple recipes for compact remnant masses and natal kicks. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3214-3221.	4.4	60
65	Model-independent inference on compact-binary observations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3254-3260.	4.4	58
66	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	4.4	58
67	Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive-star Companion inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Statistics. Astrophysical Journal, 2020, 892, 13.	4.5	57
68	Rapid Stellar and Binary Population Synthesis with COMPAS. Astrophysical Journal, Supplement Series, 2022, 258, 34.	7.7	57
69	The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter. Astrophysical Journal, 2022, 931, 17.	4.5	56
70	THE DISTRIBUTION OF COALESCING COMPACT BINARIES IN THE LOCAL UNIVERSE: PROSPECTS FOR GRAVITATIONAL-WAVE OBSERVATIONS. Astrophysical Journal Letters, 2010, 725, L91-L96.	8.3	52
71	Late-time evolution of afterglows from off-axis neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2581-2589.	4.4	52
72	Building Better Spin Models for Merging Binary Black Holes: Evidence for Nonspinning and Rapidly Spinning Nearly Aligned Subpopulations. Astrophysical Journal Letters, 2021, 921, L15.	8.3	52

#	Article	IF	CITATIONS
73	Comparison of gravitational wave detector network sky localization approximations. Physical Review D, 2014, 89, .	4.7	51
74	Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 450, L85-L89.	3.3	51
75	Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Physical Review D, 2014, 89, .	4.7	50
76	CYG X-3: A GALACTIC DOUBLE BLACK HOLE OR BLACK-HOLE-NEUTRON-STAR PROGENITOR. Astrophysical Journal, 2013, 764, 96.	4.5	49
77	Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms. Classical and Quantum Gravity, 2014, 31, 155005.	4.0	49
78	An Alternative Interpretation of GW190412 as a Binary Black Hole Merger with a Rapidly Spinning Secondary. Astrophysical Journal Letters, 2020, 895, L28.	8.3	49
79	Detecting double neutron stars with LISA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3061-3072.	4.4	49
80	Binary population synthesis with probabilistic remnant mass and kick prescriptions. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1380-1384.	4.4	49
81	Degeneracies in sky localization determination from a spinning coalescing binary through gravitational wave observations: a Markov-chain Monte Carlo analysis for two detectors. Classical and Quantum Gravity, 2009, 26, 114007.	4.0	47
82	Impact of massive binary star and cosmic evolution on gravitational wave observations – II. Double compact object rates and properties. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5737-5761.	4.4	47
83	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	4.0	44
84	Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4499-4506.	4.4	42
85	Luminous Red Novae: population models and future prospects. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3229-3240.	4.4	42
86	SUPPLEMENT: "GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP―(2016, ApJL, 829, L15). Astrophysical Journal, Supplement Series, 2016, 226, 10.	7.7	41
87	The transient gravitational-wave sky. Classical and Quantum Gravity, 2013, 30, 193002.	4.0	40
88	Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4705-4720.	4.4	40
89	Common envelope episodes that lead to double neutron star formation. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	40
90	OBSERVING GRAVITATIONAL WAVES FROM THE FIRST GENERATION OF BLACK HOLES. Astrophysical Journal, 2009, 698, L129-L132.	4.5	39

#	Article	IF	CITATIONS
91	Status of NINJA: the Numerical INJection Analysis project. Classical and Quantum Gravity, 2009, 26, 114008.	4.0	39
92	Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors. Physical Review Letters, 2015, 115, 141101.	7.8	39
93	N-BODY DYNAMICS OF INTERMEDIATE MASS-RATIO INSPIRALS IN STAR CLUSTERS. Astrophysical Journal, 2016, 832, 192.	4.5	39
94	Accelerating gravitational wave parameter estimation with multi-band template interpolation. Classical and Quantum Gravity, 2017, 34, 115006.	4.0	39
95	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	8.3	38
96	The astrophysical science case for a decihertz gravitational-wave detector. Classical and Quantum Gravity, 2018, 35, 054004.	4.0	38
97	UTILITY OF GALAXY CATALOGS FOR FOLLOWING UP GRAVITATIONAL WAVES FROM BINARY NEUTRON STAR MERGERS WITH WIDE-FIELD TELESCOPES. Astrophysical Journal, 2014, 784, 8.	4.5	37
98	Parameter estimation for signals from compact binary inspirals injected into LIGO data. Classical and Quantum Gravity, 2009, 26, 204010.	4.0	36
99	Verifying the no-hair property of massive compact objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors. Physical Review D, 2012, 85, .	4.7	36
100	The Orbit of GW170817 Was Inclined by Less Than 28° to the Line of Sight. Astrophysical Journal Letters, 2018, 853, L12.	8.3	36
101	Common envelopes in massive stars: towards the role of radiation pressure and recombination energy in ejecting red supergiant envelopes. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5462-5480.	4.4	36
102	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S529-S539.	4.0	33
103	DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI. Astrophysical Journal Letters, 2015, 805, L4.	8.3	33
104	Chemically homogeneous evolution: a rapid population synthesis approach. Monthly Notices of the Royal Astronomical Society, 2021, 505, 663-676.	4.4	33
105	<scp>stroopwafel</scp> : simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5228-5248.	4.4	30
106	Towards rapid parameter estimation on gravitational waves from compact binaries using interpolated waveforms. Physical Review D, 2013, 87, .	4.7	29
107	Limits of Astrophysics with Gravitational-Wave Backgrounds. Physical Review X, 2016, 6, .	8.9	29
108	Wind Mass-loss Rates of Stripped Stars Inferred from Cygnus X-1. Astrophysical Journal, 2021, 908, 118.	4.5	29

#	Article	IF	CITATIONS
109	Common Envelope Wind Tunnel: The Effects of Binary Mass Ratio and Implications for the Accretion-driven Growth of LIGO Binary Black Holes. Astrophysical Journal, 2020, 897, 130.	4.5	29
110	SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. Astrophysical Journal Letters, 2019, 885, L23.	8.3	28
111	Massive Stellar Mergers as Precursors of Hydrogen-rich Pulsational Pair Instability Supernovae. Astrophysical Journal Letters, 2019, 876, L29.	8.3	28
112	Astrophysical science metrics for next-generation gravitational-wave detectors. Classical and Quantum Gravity, 2019, 36, 245010.	4.0	27
113	A three-stage search for supermassive black-hole binaries in LISA data. Classical and Quantum Gravity, 2007, 24, S595-S605.	4.0	25
114	Stellar binaries in galactic nuclei: tidally stimulated mergers followed by tidal disruptions. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2042-2048.	4.4	25
115	The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte Carlo analysis of gravitational-wave signals. Classical and Quantum Gravity, 2010, 27, 114009.	4.0	24
116	Supernova explosions in active galactic nuclear discs. Monthly Notices of the Royal Astronomical Society, 2021, 507, 156-174.	4.4	24
117	Improved time–frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data. Classical and Quantum Gravity, 2008, 25, 184031.	4.0	23
118	Probing the black hole metric: Black hole shadows and binary black-hole inspirals. Physical Review D, 2021, 103, .	4.7	22
119	GW200115: A Nonspinning Black Hole–Neutron Star Merger. Astrophysical Journal Letters, 2021, 922, L14.	8.3	22
120	Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories. Physical Review Letters, 2021, 127, 081102.	7.8	21
121	Probing seed black holes using future gravitational-wave detectors. Classical and Quantum Gravity, 2009, 26, 204009.	4.0	19
122	Formation pathway for lonely stripped-envelope supernova progenitors: implications for Cassiopeia A. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1154-1171.	4.4	19
123	Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced gravitational-wave detectors. Physical Review D, 2013, 88, .	4.7	18
124	Constraints on Weak Supernova Kicks from Observed Pulsar Velocities. Astrophysical Journal Letters, 2021, 920, L37.	8.3	18
125	GRB jet structure and the jet break. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4163-4174.	4.4	17
126	Conditions for accretion disc formation and observability of wind-accreting X-ray binaries. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	17

#	Article	IF	CITATIONS
127	Constraining the luminosity function parameters and population size of radio pulsars in globular clusters. Monthly Notices of the Royal Astronomical Society, 2013, 431, 874-881.	4.4	16
128	Testing general relativity with compact coalescing binaries: comparing exact and predictive methods to compute the Bayes factor. Classical and Quantum Gravity, 2014, 31, 205006.	4.0	16
129	Unmodelled clustering methods for gravitational wave populations of compact binary mergers. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3810-3817.	4.4	16
130	The Process of Stellar Tidal Disruption by Supermassive Black Holes. Space Science Reviews, 2021, 217, 1.	8.1	16
131	Stellar response after stripping as a model for common-envelope outcomes. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2326-2338.	4.4	16
132	Detectability of Gravitational Waves from High-Redshift Binaries. Physical Review Letters, 2016, 116, 101102.	7.8	15
133	Merger rates in primordial black hole clusters without initial binaries. Monthly Notices of the Royal Astronomical Society, 2020, 496, 994-1000.	4.4	14
134	OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry. Climate of the Past, 2020, 16, 2599-2617.	3.4	14
135	Comment on "An excess of massive stars in the local 30 Doradus starburst― Science, 2018, 361, .	12.6	13
136	Global calibration of novel 3-hydroxy fatty acid based temperature and pH proxies. Geochimica Et Cosmochimica Acta, 2021, 302, 101-119.	3.9	11
137	On the Maximum Stellar Rotation to form a Black Hole without an Accompanying Luminous Transient. Astrophysical Journal Letters, 2020, 901, L24.	8.3	11
138	An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations. Royal Society Open Science, 2015, 2, 150030.	2.4	9
139	COMPAS: A rapid binary population synthesis suite. Journal of Open Source Software, 2022, 7, 3838.	4.6	9
140	Rapidly evaluating the compact-binary likelihood function via interpolation. Physical Review D, 2014, 90, .	4.7	8
141	Exploring the Parameter Space of Compact Binary Population Synthesis. Proceedings of the International Astronomical Union, 2016, 12, 46-50.	0.0	8
142	Stellar palaeontology. Nature, 2017, 547, 284-285.	27.8	8
143	Eclipses of continuous gravitational waves as a probe of stellar structure. Physical Review D, 2020, 101, .	4.7	7
144	An Accurate Analytical Fit to the Gravitational-wave Inspiral Duration for Eccentric Binaries. Research Notes of the AAS, 2021, 5, 223.	0.7	7

#	Article	IF	CITATIONS
145	Potential and field singularity at a surface point charge. Journal of Mathematical Physics, 2003, 44, 4460.	1.1	6
146	Efficient method for measuring the parameters encoded in a gravitational-wave signal. Classical and Quantum Gravity, 2015, 32, 235017.	4.0	6
147	Early Advanced LIGO binary neutron-star sky localization and parameter estimation. Journal of Physics: Conference Series, 2016, 716, 012031.	0.4	5
148	Uncertainty quantification of a computer model for binary black hole formation. Annals of Applied Statistics, 2021, 15, .	1.1	5
149	Kernel regression estimates of time delays between gravitationally lensed fluxes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 573-584.	4.4	4
150	Gravity Probe B data analysis: II. Science data and their handling prior to the final analysis. Classical and Quantum Gravity, 2015, 32, 224019.	4.0	3
151	Towards Improving the Prospects for Coordinated Gravitational-Wave and Electromagnetic Observations. Proceedings of the International Astronomical Union, 2011, 7, 358-360.	0.0	2
152	saprEMo: a simplified algorithm for predicting detections of electromagnetic transients in surveys. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
153	Education and public outreach on gravitational-wave astronomy. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
154	Relativistic astrophysics at GR20. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
155	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
156	UNRAVELING BINARY EVOLUTION FROM GRAVITATIONAL-WAVE SIGNALS AND SOURCE STATISTICS. , 2012, , .		1
157	Special Issue on Robot and Human Interactive Communication 2020 (Part II). Advanced Robotics, 2020, 34, 1545-1545.	1.8	1
158	Constraining the luminosity function parameters and population size of radio pulsars in globular clusters. Proceedings of the International Astronomical Union, 2012, 8, 257-260.	0.0	0
159	Candidate Type II Be X-Ray Binary Outbursts in NGC 6744. Research Notes of the AAS, 2021, 5, 209.	0.7	0
160	DETECTING COALESCENCES OF INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS WITH THE EINSTEIN TELESCOPE. , 2012, , .		0