Peter P Nawroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331761/publications.pdf

Version: 2024-02-01

165 papers 13,663 citations

57758 44 h-index 22166 113 g-index

170 all docs

170 docs citations

170 times ranked

15844 citing authors

#	Article	IF	CITATIONS
1	Diffusion MRI in Peripheral Nerves: Optimized $\langle i \rangle b \langle i \rangle$ Values and the Role of Non-Gaussian Diffusion. Radiology, 2022, 302, 153-161.	7.3	13
2	The activity of glyoxylase 1 is regulated by glucose-responsive phosphorylation on Tyr136. Molecular Metabolism, 2022, 55, 101406.	6.5	4
3	Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biology, 2022, 50, 102249.	9.0	9
4	A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metabolism, 2022, 34, 473-486.e9.	16.2	34
5	Impaired Hepatic Mitochondrial Capacity in Nonalcoholic Steatohepatitis Associated With Type 2 Diabetes. Diabetes Care, 2022, 45, 928-937.	8.6	18
6	The cardiac autonomic response to acute psychological stress in type 2 diabetes. PLoS ONE, 2022, 17, e0265234.	2.5	0
7	Hepatocyte-specific activity of TSC22D4 triggers progressive NAFLD by impairing mitochondrial function. Molecular Metabolism, 2022, 60, 101487.	6.5	3
8	Sciatic nerve microvascular permeability in type 2 diabetes decreased in patients with neuropathy. Annals of Clinical and Translational Neurology, 2022, 9, 830-840.	3.7	10
9	Six-Month Periodic Fasting in Patients With Type 2 Diabetes and Diabetic Nephropathy: A Proof-of-Concept Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2167-2181.	3.6	18
10	Methylglyoxal Induces Endothelial Dysfunction via a Stunning-like Phenotype. Diabetologie Und Stoffwechsel, 2022, , .	0.0	0
11	Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca2+ entry after pressure-overload induced cardiac remodelling. Progress in Biophysics and Molecular Biology, 2021, 159, 86-104.	2.9	5
12	Interaction between magnesium and methylglyoxal in diabetic polyneuropathy and neuronal models. Molecular Metabolism, 2021, 43, 101114.	6.5	7
13	Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nature Communications, 2021, 12, 426.	12.8	12
14	Quantification of All-Trans Retinoic Acid by Liquid Chromatography–Tandem Mass Spectrometry and Association with Lipid Profile in Patients with Type 2 Diabetes. Metabolites, 2021, 11, 60.	2.9	10
15	Lipocalin 13 enhances insulin secretion but is dispensable for systemic metabolic control. Life Science Alliance, 2021, 4, e202000898.	2.8	5
16	Diffusion Tensor Imaging of the Sciatic Nerve as a Surrogate Marker for Nerve Functionality of the Upper and Lower Limb in Patients With Diabetes and Prediabetes. Frontiers in Neuroscience, 2021, 15, 642589.	2.8	26
17	Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nature Communications, 2021, 12, 2999.	12.8	22
18	Methylglyoxal Drives a Distinct, Nonclassical Macrophage Activation Status. Thrombosis and Haemostasis, 2021, 121, 1464-1475.	3.4	4

#	Article	IF	CITATIONS
19	Elevated Expression of the RAGE Variant-V in SCLC Mitigates the Effect of Chemotherapeutic Drugs. Cancers, 2021, 13, 2843.	3.7	4
20	Associations of Childhood Neglect With the ACTH and Plasma Cortisol Stress Response in Patients With Type 2 Diabetes. Frontiers in Psychiatry, 2021, 12, 679693.	2.6	6
21	Emerging Targets in Type 2 Diabetes and Diabetic Complications. Advanced Science, 2021, 8, e2100275.	11.2	133
22	Reduced Acrolein Detoxification in <i>akr1a1a</i> Zebrafish Mutants Causes Impaired Insulin Receptor Signaling and Microvascular Alterations. Advanced Science, 2021, 8, e2101281.	11.2	11
23	Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metabolism, 2021, 33, 1685-1700.e9.	16.2	73
24	Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload. Molecular Metabolism, 2021, 51, 101235.	6.5	46
25	A laser-mediated photo-manipulative toolbox for generation and real-time monitoring of DNA lesions. STAR Protocols, 2021, 2, 100700.	1.2	2
26	CHOP-ASO Ameliorates Glomerular and Tubular Damage on Top of ACE Inhibition in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 3066-3079.	6.1	14
27	Is the association between diabetes mellitus and pulmonary fibrosis real?. Nature Reviews Endocrinology, 2021, 17, 703-704.	9.6	9
28	Diabetic Pneumopathy–A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Frontiers in Endocrinology, 2021, 12, 765201.	3.5	20
29	Fractional Anisotropy and Troponin T Parallel Structural Nerve Damage at the Upper Extremities in a Group of Patients With Prediabetes and Type 2 Diabetes – A Study Using 3T Magnetic Resonance Neurography. Frontiers in Neuroscience, 2021, 15, 741494.	2.8	2
30	Magnetic Resonance Neurography Reveals Smoking-Associated Decrease in Sciatic Nerve Structural Integrity in Type 2 Diabetes. Frontiers in Neuroscience, 2021, 15, 811085.	2.8	6
31	Structural Nerve Remodeling at 3-T MR Neurography Differs between Painful and Painless Diabetic Polyneuropathy in Type 1 or 2 Diabetes. Radiology, 2020, 294, 405-414.	7.3	31
32	Understanding Diabetic Neuropathy—From Subclinical Nerve Lesions to Severe Nerve Fiber Deficits: A Cross-Sectional Study in Patients With Type 2 Diabetes and Healthy Control Subjects. Diabetes, 2020, 69, 436-447.	0.6	31
33	The Glyoxalase Systemâ€"New Insights into an Ancient Metabolism. Antioxidants, 2020, 9, 939.	5.1	30
34	Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biology, 2020, 37, 101723.	9.0	36
35	Regulation of Gluconeogenesis by Aldo-keto-reductase 1a1b in Zebrafish. IScience, 2020, 23, 101763.	4.1	9
36	SUMOylation of Enzymes and Ion Channels in Sensory Neurons Protects against Metabolic Dysfunction, Neuropathy, and Sensory Loss in Diabetes. Neuron, 2020, 107, 1141-1159.e7.	8.1	27

#	Article	IF	CITATIONS
37	Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography. Frontiers in Neuroscience, 2020, 14, 570744.	2.8	14
38	Phosphorylation of T107 by CamKIIÎ' Regulates the Detoxification Efficiency and Proteomic Integrity of Glyoxalase 1. Cell Reports, 2020, 32, 108160 .	6.4	12
39	Endothelial Notch signaling controls insulin transport in muscle. EMBO Molecular Medicine, 2020, 12, e09271.	6.9	23
40	Compromised <scp>DNA</scp> repair is responsible for diabetesâ€associated fibrosis. EMBO Journal, 2020, 39, e103477.	7.8	49
41	Characterization of experimental diabetic neuropathy using multicontrast magnetic resonance neurography at ultra high field strength. Scientific Reports, 2020, 10, 7593.	3.3	8
42	Urinary cathepsin L is predictive of changes in albuminuria and correlates with glucosepane in patients with type 2 diabetes in a closed-cohort study. Journal of Diabetes and Its Complications, 2020, 34, 107648.	2.3	7
43	Troponin T Parallels Structural Nerve Damage in Type 2 Diabetes: A Cross-sectional Study Using Magnetic Resonance Neurography. Diabetes, 2020, 69, 713-723.	0.6	34
44	Michaelis-Menten Kinetics Measurements of Aldo-Keto Reductases for Various Substrates in Murine Tissue. STAR Protocols, 2020, 1, 100206.	1.2	1
45	Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes and Endocrinology,the, 2019, 7, 684-694.	11.4	364
46	Metabolic surgery improves renal injury independent of weight loss: a meta-analysis. Surgery for Obesity and Related Diseases, 2019, 15, 1006-1020.	1.2	32
47	Serum uromodulin and Roux-en-Y gastric bypass: improvement of a marker reflecting nephron mass. Surgery for Obesity and Related Diseases, 2019, 15, 1319-1325.	1.2	13
48	Asprosin response in hypoglycemia is not related to hypoglycemia unawareness but rather to insulin resistance in type 1 diabetes. PLoS ONE, 2019, 14, e0222771.	2.5	25
49	Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. Journal of Inherited Metabolic Disease, 2019, 42, 398-406.	3.6	38
50	Association of Serum Cholesterol Levels With Peripheral Nerve Damage in Patients With Type 2 Diabetes. JAMA Network Open, 2019, 2, e194798.	5.9	46
51	CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cellular and Molecular Life Sciences, 2019, 76, 4551-4568.	5.4	14
52	Structure–function relationships in peripheral nerve contributions to diabetic peripheral neuropathy. Pain, 2019, 160, S29-S36.	4.2	24
53	BRAF V600E and Retinoic Acid in Radioiodine-Refractory Papillary Thyroid Cancer. Hormone and Metabolic Research, 2019, 51, 69-75.	1.5	8
54	Clinical Trials on Diabetic Nephropathy: A Cross-Sectional Analysis. Diabetes Therapy, 2019, 10, 229-243.	2.5	3

#	Article	IF	CITATIONS
55	Methylglyoxal accumulation de-regulates HoxA5 expression, thereby impairing angiogenesis in glyoxalase 1 knock-down mouse aortic endothelial cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 73-85.	3.8	24
56	Methylglyoxal induces retinopathyâ€type lesions in the absence of hyperglycemia: studies in a rat model. FASEB Journal, 2019, 33, 4141-4153.	0.5	27
57	Effects of the Reactive Metabolite Methylglyoxal on Cellular Signalling, Insulin Action and Metabolism – What We Know in Mammals and What We Can Learn From Yeast. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 203-214.	1.2	8
58	Impact of Depression and Psychosocial Treatment on Heart Rate Variability in Patients with Type 2 Diabetes Mellitus: An Exploratory Analysis Based on the HEIDIS Trial. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 367-376.	1.2	8
59	Methylglyoxal and Advanced Glycation End Products in Patients with Diabetes – What We Know so Far and the Missing Links. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 497-504.	1.2	39
60	Effect of metformin treatment in patients with type 2 diabetes with respect to glyoxalase 1 activity in atherosclerotic lesions. Vasa - European Journal of Vascular Medicine, 2019, 48, 186-192.	1.4	12
61	The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight, 2019, 4, .	5.0	37
62	Cell cycle arrest and cell death correlate with the extent of ischaemia and reperfusion injury in patients following kidney transplantation - results of an observational pilot study. Transplant International, 2018, 31, 751-760.	1.6	3
63	High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. Journal of Biological Chemistry, 2018, 293, 4845-4859.	3.4	5
64	Risk Factors for Incident Diabetic Polyneuropathy in a Cohort With Screen-Detected Type 2 Diabetes Followed for 13 Years: ADDITION-Denmark. Diabetes Care, 2018, 41, 1068-1075.	8.6	146
65	Diabetic neuropathy differs between type 1 and type 2 diabetes: Insights from magnetic resonance neurography. Annals of Neurology, 2018, 83, 588-598.	5. 3	69
66	TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Molecular Metabolism, 2018, 9, 156-167.	6.5	30
67	Inhibition of Endothelial Notch Signaling Impairs Fatty Acid Transport and Leads to Metabolic and Vascular Remodeling of the Adult Heart. Circulation, 2018, 137, 2592-2608.	1.6	103
68	Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes. Cell Metabolism, 2018, 27, 926-934.e8.	16.2	117
69	Genetic Polymorphisms of Antioxidant and Antiglycation Enzymes and Diabetic Complications. How Much Can we Learn from the Genes?. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 7-13.	1.2	6
70	Modulation of glutathione peroxidase activity by age-dependent carbonylation in glomeruli of diabetic mice. Journal of Diabetes and Its Complications, 2018, 32, 130-138.	2.3	11
71	The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice. Redox Biology, 2018, 15, 12-21.	9.0	40
72	Sensitive mass spectrometric assay for determination of 15-deoxy-î"12,14-prostaglandin J2 and its application in human plasma samples of patients with diabetes. Analytical and Bioanalytical Chemistry, 2018, 410, 521-528.	3.7	17

#	Article	IF	Citations
73	The Expression of Aldolase B in Islets Is Negatively Associated With Insulin Secretion in Humans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4373-4383.	3.6	42
74	An 8-week diet high in cereal fiber and coffee but free of red meat does not improve beta-cell function in patients with type 2 diabetes mellitus: a randomized controlled trial. Nutrition and Metabolism, 2018, 15, 90.	3.0	4
75	Compensatory mechanisms for methylglyoxal detoxification in experimental & Compensatory mechanis	6.5	45
76	Diabetic Pulmopathy: A New Clinical Challenge for Diabetology. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 590-591.	1.2	3
77	The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus. Kidney International, 2018, 94, 937-950.	5.2	23
78	Activated protein C reverses epigenetically sustained p66Shc expression in plaque-associated macrophages in diabetes. Communications Biology, 2018, 1, 104.	4.4	28
79	Dietary stearic acid regulates mitochondria in vivo in humans. Nature Communications, 2018, 9, 3129.	12.8	80
80	Breathlessness and Restrictive Lung Disease: An Important Diabetes-Related Feature in Patients with Type 2 Diabetes. Respiration, 2018, 96, 29-40.	2.6	44
81	ALCAM a novel biomarker in patients with type 2 diabetes mellitus complicated with diabetic nephropathy. Journal of Diabetes and Its Complications, 2017, 31, 1058-1065.	2.3	14
82	Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells. Journal of Biological Chemistry, 2017, 292, 3224-3238.	3.4	67
83	Electrical Muscle Stimulation Induces an Increase of VEGFR2 on Circulating Hematopoietic Stem Cells in Patients With Diabetes. Clinical Therapeutics, 2017, 39, 1132-1144.e2.	2.5	10
84	Evidence Against a Role for the Parkinsonism-associated Protein DJ-1 in Methylglyoxal Detoxification. Journal of Biological Chemistry, 2017, 292, 685-690.	3.4	45
85	A scavenger peptide prevents methylglyoxal induced pain in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 654-662.	3.8	30
86	Uncoupled iron homeostasis in type 2 diabetes mellitus. Journal of Molecular Medicine, 2017, 95, 1387-1398.	3.9	35
87	Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell Metabolism, 2017, 26, 842-855.e5.	16.2	180
88	Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux. Redox Biology, 2017, 13, 674-686.	9.0	31
89	A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Reports, 2017, 20, 1422-1434.	6.4	7
90	Homeostatic nuclear RAGE–ATM interaction is essential for efficient DNA repair. Nucleic Acids Research, 2017, 45, 10595-10613.	14.5	66

#	Article	IF	Citations
91	Reply to Richarme: Evidence against a role of DJ-1 in methylglyoxal detoxification. Journal of Biological Chemistry, 2017, 292, 12784-12785.	3.4	7
92	Signal integration at the PI3K-p85-XBP1 hub endows coagulation protease activated protein C with insulin-like function. Blood, 2017, 130, 1445-1455.	1.4	28
93	Farnesoid X Receptor Agonism Protects against Diabetic Tubulopathy: Potential Add-On Therapy for Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 3182-3189.	6.1	53
94	Reduction in ins-7 gene expression in non-neuronal cells of high glucose exposed Caenorhabditis elegans protects from reactive metabolites, preserves neuronal structure and head motility, and prolongs lifespan. Journal of Diabetes and Its Complications, 2017, 31, 304-310.	2.3	8
95	The Glyoxalase System and Methylglyoxal-Derived Carbonyl Stress in Sepsis: Glycotoxic Aspects of Sepsis Pathophysiology. International Journal of Molecular Sciences, 2017, 18, 657.	4.1	25
96	Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. International Journal of Molecular Sciences, 2017, 18, 984.	4.1	152
97	Outcome after resection of Adrenocortical Carcinoma liver metastases: a retrospective study. BMC Cancer, 2017, 17, 522.	2.6	29
98	Characterization of aggregate load and pattern in living yeast cells by flow cytometry. BioTechniques, 2016, 61, 137-148.	1.8	8
99	A Glyoxalase-1 Knockdown Does Not Have Major Short Term Effects on Energy Expenditure and Atherosclerosis in Mice. Journal of Diabetes Research, 2016, 2016, 1-8.	2.3	15
100	Diabetic Retinopathy Screening Ratio Is Improved When Using a Digital, Nonmydriatic Fundus Camera Onsite in a Diabetes Outpatient Clinic. Journal of Diabetes Research, 2016, 2016, 1-10.	2.3	12
101	Receptor for Advanced Glycation End Products (RAGE) Serves a Protective Role during Klebsiella pneumoniae - Induced Pneumonia. PLoS ONE, 2016, 11, e0141000.	2.5	26
102	Reply. Annals of Neurology, 2016, 80, 309-310.	5.3	0
103	Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood, 2016, 128, 2435-2449.	1.4	219
104	Hyperglycemia in Stroke Impairs Polarization of Monocytes/Macrophages to a Protective Noninflammatory Cell Type. Journal of Neuroscience, 2016, 36, 9313-9325.	3.6	39
105	Reduced glyoxalase 1 activity in carotid artery plaques of nondiabetic patients with increased hemoglobin A1c level. Journal of Vascular Surgery, 2016, 64, 990-994.	1.1	8
106	ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Scientific Reports, 2016, 6, 37172.	3.3	34
107	Control of diabetic hyperglycaemia and insulin resistance through TSC22D4. Nature Communications, 2016, 7, 13267.	12.8	27
108	Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy. Scientific Reports, 2016, 6, 34228.	3.3	73

#	Article	IF	Citations
109	The effect of lifestyle intervention in obesity on the soluble form of activated leukocyte cell adhesion molecule. BMC Endocrine Disorders, 2016, 16, 56.	2.2	2
110	Combined Non-alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Sleeve Gastrectomy or Gastric Bypass?—a Controlled Matched Pair Study of 34 Patients. Obesity Surgery, 2016, 26, 1867-1874.	2.1	66
111	Caspase-1, but Not Caspase-3, Promotes Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 2270-2275.	6.1	91
112	Prion Aggregates Are Recruited to the Insoluble Protein Deposit (IPOD) via Myosin 2-Based Vesicular Transport. PLoS Genetics, 2016, 12, e1006324.	3.5	38
113	Magnetic resonance neurography detects diabetic neuropathy early and with Proximal Predominance. Annals of Neurology, 2015, 78, 939-948.	5.3	88
114	No short-term effects of calorie-controlled Mediterranean or fast food dietary interventions on established biomarkers of vascular or metabolic risk in healthy individuals. Nutrition Research and Practice, 2015, 9, 165.	1.9	8
115	Role of the RAGE Axis during the Immune Response after Severe Trauma: A Prospective Pilot Study. Mediators of Inflammation, 2015, 2015, 1-9.	3.0	7
116	High Tissue Glucose Alters Intersomitic Blood Vessels in Zebrafish via Methylglyoxal Targeting the VEGF Receptor Signaling Cascade. Diabetes, 2015, 64, 213-225.	0.6	41
117	Dickkopf-3, a Tissue-Derived Modulator of Local T-Cell Responses. Frontiers in Immunology, 2015, 6, 78.	4.8	40
118	Increased peritoneal damage in glyoxalase 1 knock-down mice treated with peritoneal dialysis. Nephrology Dialysis Transplantation, 2015, 30, 401-409.	0.7	4
119	daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia, 2015, 58, 393-401.	6.3	30
120	Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney International, 2015, 87, 74-84.	5.2	327
121	Carnosine metabolism in diabetes is altered by reactive metabolites. Amino Acids, 2015, 47, 2367-2376.	2.7	28
122	Nitrosative stress but not glycemic parameters correlate with improved neuropathy in nonseverely obese diabetic patients after Roux-Y gastric bypass. Surgery for Obesity and Related Diseases, 2015, 11, 847-854.	1.2	20
123	Impact of intensive treatment on serum methylglyoxal levels among individuals with screen-detected type 2 diabetes: the ADDITION-Denmark study. Acta Diabetologica, 2015, 52, 929-936.	2.5	8
124	Risk of Malnutrition, Trace Metal, and Vitamin Deficiency PostÂRoux-en-Y Gastric Bypassâ€"a Prospective Study of 20 Patients with BMI <35Âkg/m2. Obesity Surgery, 2015, 25, 2125-2134.	2.1	32
125	Surgical Versus Medical Treatment of Type 2 Diabetes Mellitus in Nonseverely Obese Patients. Annals of Surgery, 2015, 261, 421-429.	4.2	125
126	Gender difference in glyoxalase 1 activity of atherosclerotic carotid artery lesions. Journal of Vascular Surgery, 2015, 62, 471-476.	1.1	7

#	Article	IF	Citations
127	Are there new approaches for diagnosis, therapy guidance and outcome prediction of sepsis?. World Journal of Experimental Medicine, 2015, 5, 50.	1.7	21
128	Reactive metabolites as a cause of late diabetic complications. Biochemical Society Transactions, 2014, 42, 439-442.	3.4	23
129	Methylglyoxal as a new biomarker in patients with septic shock: an observational clinical study. Critical Care, 2014, 18, 683.	5.8	34
130	Lower Plasma Creatinine and Urine Albumin in Individuals at Increased Risk of Type 2 Diabetes with Factor V Leiden Mutation. Isrn Endocrinology, 2014, 2014, 1-3.	2.0	6
131	Methylglyoxal concentrations differ in standard and washed neonatal packed red blood cells. Pediatric Research, 2014, 75, 409-414.	2.3	6
132	Inverse association of the endogenous thrombin potential (ETP) with cardiovascular death: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. International Journal of Cardiology, 2014, 176, 139-144.	1.7	28
133	Gastric Bypass Leads to Improvement of Diabetic Neuropathy Independent of Glucose Normalization—Results of a Prospective Cohort Study (DiaSurg 1 Study). Annals of Surgery, 2013, 258, 760-766.	4.2	71
134	Methylglyoxal Activates Nociceptors through Transient Receptor Potential Channel A1 (TRPA1). Journal of Biological Chemistry, 2012, 287, 28291-28306.	3.4	166
135	Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nature Medicine, 2012, 18, 926-933.	30.7	414
136	Activated Protein C Targets PI3K-p85/XBP1 Pathway to Inhibit Hyperglycemia Induced Endoplasmic Reticulum Stress in Diabetic Nephropathy. Blood, 2012, 120, 3354-3354.	1.4	0
137	Hepatic Deficiency in Transcriptional Cofactor TBL1 Promotes Liver Steatosis and Hypertriglyceridemia. Cell Metabolism, 2011, 13, 389-400.	16.2	49
138	Minocycline reduces plaque size in diet induced atherosclerosis via p27Kip1. Atherosclerosis, 2011, 219, 74-83.	0.8	27
139	The new puzzle about the treatment of type 2 diabetes after the ACCORD and Da Qing studies. Langenbeck's Archives of Surgery, 2011, 396, 941-947.	1.9	1
140	Proximal Neuropathic Lesions in Distal Symmetric Diabetic Polyneuropathy. Diabetes Care, 2011, 34, 721-723.	8.6	64
141	Apurinic/apyrimidinic endonuclease 1, p53, and thioredoxin are linked in control of aging in <i>C.Âelegans</i> . Aging Cell, 2010, 9, 420-432.	6.7	26
142	Reactive Metabolites and AGE/RAGE-Mediated Cellular Dysfunction Affect the Aging Process – A Mini-Review. Gerontology, 2010, 57, 435-43.	2.8	113
143	The Lectin-Like Domain of Thrombomodulin Protects Against Diabetic Nephropathy by Inhibiting Complement Activation. Blood, 2010, 116, 654-654.	1.4	0
144	PAR-3 Activation by Activated Protein C: a Novel Podocyte Protective Signalling Pathway. Blood, 2010, 116, 329-329.	1.4	0

#	Article	IF	CITATIONS
145	<i>C. elegans</i> as Model for the Study of High Glucose– Mediated Life Span Reduction. Diabetes, 2009, 58, 2450-2456.	0.6	248
146	Hypercoagulability Inhibits Monocyte Transendothelial Migration Through Protease-Activated Receptor-1-, Phospholipase-Cl ² -, Phosphoinositide 3-Kinase-, and Nitric Oxide-Dependent Signaling in Monocytes and Promotes Plaque Stability. Circulation, 2009, 120, 774-784.	1.6	69
147	Glyoxalaseâ€1 prevents mitochondrial protein modification and enhances lifespan in <i> Caenorhabditis elegans</i> . Aging Cell, 2008, 7, 260-269.	6.7	251
148	The HMGB1 Receptor RAGE Mediates Ischemic Brain Damage. Journal of Neuroscience, 2008, 28, 12023-12031.	3.6	362
149	Functional Polymorphisms of UCP2 and UCP3 Are Associated With a Reduced Prevalence of Diabetic Neuropathy in Patients With Type 1 Diabetes. Diabetes Care, 2006, 29, 89-94.	8.6	67
150	Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine, 2005, 83, 876-886.	3.9	1,083
151	Carnosine as a Protective Factor in Diabetic Nephropathy. Diabetes, 2005, 54, 2320-2327.	0.6	264
152	Loss of TM-Dependent PC-Activation Predisposes to Diabetic Nephropathy: Potential Role of Endothelial Apoptosis Blood, 2005, 106, 1029-1029.	1.4	0
153	Regulation of neovascularization by human neutrophil peptides ($\hat{l}\pm$ -defensins): a link between inflammation and angiogenesis. , 2004, 18, 1306.		1
154	Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. Journal of Clinical Investigation, 2004, 114, 1741-1751.	8.2	247
155	Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. Journal of Clinical Investigation, 2004, 113, 1641-1650.	8.2	263
156	Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. Journal of Clinical Investigation, 2004, 113, 1641-1650.	8.2	422
157	New treatments for diabetic neuropathy: Pathogenetically oriented treatment. Current Diabetes Reports, 2003, 3, 452-458.	4.2	12
158	RAGE mediates amyloid- \hat{l}^2 peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine, 2003, 9, 907-913.	30.7	1,277
159	Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis, 2001, 30, 36-44.	1.6	254
160	AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovascular Research, 1998, 37, 586-600.	3.8	456
161	Tumor Necrosis Factor Increases Serum Leptin Levels in Humans. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 4080-4082.	3.6	225
162	The Dietary Pigment Curcumin Reduces Endothelial Tissue Factor Gene Expression by Inhibiting Binding of AP-1 to the DNA and Activation of NF-κB. Thrombosis and Haemostasis, 1997, 77, 772-782.	3.4	145

#	Article	IF	CITATIONS
163	RAGE and amyloid- \hat{l}^2 peptide neurotoxicity in Alzheimer's disease. Nature, 1996, 382, 685-691.	27.8	1,947
164	Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid \hat{l}^2 -peptide. Nature Medicine, 1995, 1, 693-699.	30.7	416
165	Cellular localization of tissue factor in human breast cancer cell lines. Vigiliae Christianae, 1993, 64, 265-269.	0.1	15