Sumbal Saba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331738/publications.pdf

Version: 2024-02-01

		186265	265206
50	1,833	28	42
papers	citations	h-index	g-index
F0	F.O.	F.O.	1250
59	59	59	1359
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Regioselective, Solvent―and Metalâ€Free Chalcogenation of Imidazo[1,2â€ <i>a</i>]pyridines by Employing I ₂ /DMSO as the Catalytic Oxidation System. Chemistry - A European Journal, 2016, 22, 11854-11862.	3.3	156
2	Direct, Metalâ€free C(sp ²)â^'H Chalcogenation of Indoles and Imidazopyridines with Dichalcogenides Catalysed by KIO ₃ . Chemistry - A European Journal, 2018, 24, 4173-4180.	3.3	107
3	Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: a metal free approach. Organic and Biomolecular Chemistry, 2018, 16, 880-885.	2.8	105
4	Aflatoxin M1 in human breast milk: A global systematic review, meta-analysis, and risk assessment study (Monte Carlo simulation). Trends in Food Science and Technology, 2019, 88, 333-342.	15.1	80
5	DMSO/iodine-catalyzed oxidative C–Se/C–S bond formation: a regioselective synthesis of unsymmetrical chalcogenides with nitrogen- or oxygen-containing arenes. Catalysis Science and Technology, 2016, 6, 3087-3098.	4.1	76
6	Synthesis of Unsymmetrical Diorganyl Chalcogenides under Greener Conditions: Use of an Iodine/DMSO System, Solvent―and Metalâ€Free Approach. Advanced Synthesis and Catalysis, 2015, 357, 1446-1452.	4.3	72
7	Solvent―and Metalâ€Free Chalcogenation of Bicyclic Arenes Using I ₂ /DMSO as Nonâ€Metallic Catalytic System. European Journal of Organic Chemistry, 2017, 2017, 4740-4748.	2.4	61
8	Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2016, 24, 5762-5770.	3.0	60
9	Electrochemical synthesis of selenyl-dihydrofurans <i>via</i> anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Organic and Biomolecular Chemistry, 2020, 18, 4916-4921.	2.8	56
10	KIO ₃ â€Catalyzed C(sp ²)â€H Bond Selenylation/Sulfenylation of (Hetero)arenes: Synthesis of Chalcogenated (Hetero)arenes and their Evaluation for Antiâ€Alzheimer Activity. Asian Journal of Organic Chemistry, 2018, 7, 1819-1824.	2.7	54
11	NH4I-catalyzed chalcogen(S/Se)-functionalization of 5-membered N-heteroaryls under metal-free conditions. Tetrahedron, 2018, 74, 3971-3980.	1.9	53
12	Metal- and Solvent-Free Approach to Access 3-Se/S-Chromones from the Cyclization of Enaminones in the Presence of Dichalcogenides Catalyzed by KIO ₃ . ACS Omega, 2017, 2, 2280-2290.	3 . 5	51
13	Trihaloisocyanuric acids in ethanol: an eco-friendly system for the regioselective halogenation of imidazo-heteroarenes. Green Chemistry, 2020, 22, 3410-3415.	9.0	49
14	Copper-Catalyzed Synthesis of Unsymmetrical Diorganyl Chalcogenides (Te/Se/S) from Boronic Acids under Solvent-Free Conditions. Molecules, 2017, 22, 1367.	3.8	48
15	Solvent- and metal-free selective oxidation of thiols to disulfides using I2/DMSO catalytic system. Tetrahedron Letters, 2017, 58, 4713-4716.	1.4	46
16	Electrochemical Oxidative C(sp ²)â€"H Bond Selenylation of Activated Arenes. European Journal of Organic Chemistry, 2019, 2019, 6465-6469.	2.4	43
17	Novel selenylated imidazo [1,2-a] pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochemical and Biophysical Research Communications, 2018, 503, 1291-1297.	2.1	42
18	Synthesis and Biological Evaluation of 2-Picolylamide-Based Diselenides with Non-Bonded Interactions. Molecules, 2015, 20, 10095-10109.	3.8	39

#	Article	IF	CITATIONS
19	Synthesis of Functionalized Organoselenium Materials: Selenides and Diselenides Containing Cholesterol. European Journal of Organic Chemistry, 2015, 2015, 3470-3476.	2.4	39
20	Recent Advances in the Synthesis of Biologically Relevant Selenium-containing 5-Membered Heterocycles. Current Organic Chemistry, 2015, 20, 166-188.	1.6	39
21	Fe ₃ O ₄ Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Direct Câ€H Bond Selenylation and Sulfenylation of Benzothiazoles. ChemistrySelect, 2018, 3, 328-334.	1.5	37
22	Borophosphate glasses: Synthesis, characterization and application as catalyst for bis(indolyl)methanes synthesis under greener conditions. Journal of Non-Crystalline Solids, 2018, 498, 153-159.	3.1	37
23	K ₂ CO ₃ -mediated, direct Câ€"H bond selenation and thiolation of 1,3,4-oxadiazoles in the absence of metal catalyst: an eco-friendly approach. RSC Advances, 2014, 4, 51648-51652.	3.6	36
24	Copperâ€Catalyzed Threeâ€Component Reaction of Oxadiazoles, Elemental Se/S and Aryl Iodides: Synthesis of Chalcogenyl (Se/S)â€Oxadiazoles. ChemistrySelect, 2018, 3, 13191-13196.	1.5	35
25	Photoinduced, Direct C(sp ²)â^'H Bond Azo Coupling of Imidazoheteroarenes and Imidazoanilines with Aryl Diazonium Salts Catalyzed by Eosinâ€Y. Chemistry - A European Journal, 2020, 26, 4461-4466.	3.3	35
26	The Thiol-Modifier Effects of Organoselenium Compounds and Their Cytoprotective Actions in Neuronal Cells. Neurochemical Research, 2021, 46, 120-130.	3.3	35
27	Antioxidant and Antiplasmodial Activities of Bergenin and 11 - <i>O</i> -Galloylbergenin Isolated from <i>Mallotus philippensis</i> . Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-6.	4.0	33
28	KIO ₄ â€mediated Selective Hydroxymethylation/Methylenation of Imidazoâ€Heteroarenes: A Greener Approach. Angewandte Chemie - International Edition, 2021, 60, 18454-18460.	13.8	30
29	Regioselective hydrothiolation of terminal acetylene catalyzed by magnetite (Fe ₃ O ₄) nanoparticles. Synthetic Communications, 2017, 47, 291-298.	2.1	27
30	Borophosphate glass as an active media for CuO nanoparticle growth: an efficient catalyst for selenylation of oxadiazoles and application in redox reactions. Scientific Reports, 2020, 10, 15233.	3.3	26
31	Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. Dyes and Pigments, 2020, 180, 108519.	3.7	26
32	A selanylimidazopyridine (3-SePh-IP) reverses the prodepressant- and anxiogenic-like effects of a high-fat/high-fructose diet in mice. Journal of Pharmacy and Pharmacology, 2021, 73, 673-681.	2.4	25
33	Ytterbium (III) triflate/Sodium Dodecyl Sulfate: A Versatile Recyclable and Waterâ€Tolerant Catalyst for the Synthesis of Bis(indolyl)methanes (BIMs). ChemistrySelect, 2018, 3, 6358-6363.	1.5	24
34	Apoptosis oxidative damageâ€mediated and antiproliferative effect of selenylated imidazo[1,2â€∢i>a⟨li>]pyridines on hepatocellular carcinoma HepG2 cells and in vivo. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22663.	3.0	23
35	Synthesis of Novel Selenocyanates and Evaluation of Their Effect in Cultured Mouse Neurons Submitted to Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	4.0	20
36	Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides as GPx Mimics. Molecules, 2021, 26, 4446.	3.8	17

#	Article	IF	Citations
37	Alkyl 2-(2-(arylidene)alkylhydrazinyl)thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies. Journal of Molecular Structure, 2021, 1245, 131063.	3.6	17
38	Versatile Electrochemical Synthesis of Selenylbenzo[b] Furan Derivatives Through the Cyclization of 2-Alkynylphenols. Frontiers in Chemistry, 2022, 10, .	3.6	16
39	IP-Se-06, a Selenylated Imidazo[1,2-a]pyridine, Modulates Intracellular Redox State and Causes Akt/mTOR/HIF-11± and MAPK Signaling Inhibition, Promoting Antiproliferative Effect and Apoptosis in Glioblastoma Cells. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	4.0	15
40	Synthesis of 2,1,3-Benzoxadiazole Derivatives as New Fluorophoresâ€"Combined Experimental, Optical, Electro, and Theoretical Study. Frontiers in Chemistry, 2020, 8, 360.	3.6	10
41	New long-chain donor-acceptor-donor pyromellitic diimide (PMDI) derivatives. A combined theoretical and experimental study. Dyes and Pigments, 2018, 157, 143-150.	3.7	7
42	KIO ₄ â€mediated Selective Hydroxymethylation/Methylenation of Imidazoâ€Heteroarenes: A Greener Approach. Angewandte Chemie, 2021, 133, 18602-18608.	2.0	6
43	Synthesis of cholesterol containing unsymmetrical dimers: a new series of liquid crystals. Liquid Crystals, 2022, 49, 758-768.	2.2	6
44	Spectral characterization and crystal structure of 2-amino-N′-[(1Z)-1-(4-chlorophenyl)ethylidene]-benzohydrazide. Journal of Saudi Chemical Society, 2016, 20, 40-44.	5.2	5
45	Synthesis of new monodendrons, gallic acid derivatives, self- assembled in a columnar phase. Liquid Crystals, 2015, , 1-13.	2.2	3
46	Frontispiece: Photoinduced, Direct C(sp ²)â^'H Bond Azo Coupling of Imidazoheteroarenes and Imidazoanilines with Aryl Diazonium Salts Catalyzed by Eosinâ€Y. Chemistry - A European Journal, 2020, 26, .	3.3	2
47	(2-Aminophenyl)[(5S)-5-hydroxy-3,5-dimethyl-4,5-dihydro-1H-pyrazol-1-yl]methanone. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1834-o1835.	0.2	1
48	Antimicrobial and Antibiofilm Activities of 4,5-Dihydro-1H-pyrazole-1-carboximidamide Hydrochloride against Salmonella spp Journal of Chemistry, 2021, 2021, 1-9.	1.9	1
49	Synthesis of Bis(indolyl)methanes Using Fe3O4 Nanoparticle as a Robust, Efficient and Magnetically Recoverable Catalyst Under Solvent-Free Conditions. Revista Virtual De Quimica, 2018, 10, 1591-1606.	0.4	1
50	Advances in photochemical seleno-functionalization of (hetero)arenes., 2022,, 123-145.		0