John Strouboulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331042/publications.pdf Version: 2024-02-01

IOHN STROUBOUUS

#	Article	IF	CITATIONS
1	Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 1998, 19, 187-191.	9.4	2,484
2	Development of hematopoietic stem cell activity in the mouse embryo. Immunity, 1994, 1, 291-301.	6.6	804
3	Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7480-7485.	3.3	400
4	Heterochromatin Effects on the Frequency and Duration of LCR-Mediated Gene Transcription. Cell, 1996, 87, 105-114.	13.5	320
5	GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO Journal, 2005, 24, 2354-2366.	3.5	255
6	NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment. Cell Stem Cell, 2012, 10, 583-594.	5.2	207
7	Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice Genes and Development, 1992, 6, 1857-1864.	2.7	203
8	Proteomics Analysis of Ring1B/Rnf2 Interactors Identifies a Novel Complex with the Fbxl10/Jhdm1B Histone Demethylase and the Bcl6 Interacting Corepressor. Molecular and Cellular Proteomics, 2007, 6, 820-834.	2.5	202
9	The Effect of Distance on Long-Range Chromatin Interactions. Molecular Cell, 1997, 1, 131-139.	4.5	182
10	Erythropoiesis: Model systems, molecular regulators, and developmental programs. IUBMB Life, 2009, 61, 800-830.	1.5	169
11	Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes and Development, 2004, 18, 1495-1509.	2.7	157
12	ETO-2 Associates with SCL in Erythroid Cells and Megakaryocytes and Provides Repressor Functions in Erythropoiesis. Molecular and Cellular Biology, 2005, 25, 10235-10250.	1.1	130
13	ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO Journal, 2006, 25, 357-366.	3.5	126
14	Novel binding partners of Ldb1 are required for haematopoietic development. Development (Cambridge), 2006, 133, 4913-4923.	1.2	115
15	Nuclear Receptors TR2 and TR4 Recruit Multiple Epigenetic Transcriptional Corepressors That Associate Specifically with the Embryonic β-Type Globin Promoters in Differentiated Adult Erythroid Cells. Molecular and Cellular Biology, 2011, 31, 3298-3311.	1.1	98
16	A generic tool for biotinylation of tagged proteins in transgenic mice. Transgenic Research, 2005, 14, 477-482.	1.3	81
17	Regulation of GATA1 levels in erythropoiesis. IUBMB Life, 2020, 72, 89-105.	1.5	64
18	Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood, 2008, 112, 2738-2749.	0.6	58

JOHN STROUBOULIS

#	Article	IF	CITATIONS
19	Stochastic Patterns in Globin Gene Expression Are Established prior to Transcriptional Activation and Are Clonally Inherited. Molecular Cell, 2002, 9, 1319-1326.	4.5	51
20	Persistent Î ³ -globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. Blood, 2003, 102, 3412-3419.	0.6	40
21	Optimal use of tandem biotin and V5 tags in ChIP assays. BMC Molecular Biology, 2009, 10, 6.	3.0	39
22	Role of Helix-Loop-Helix Proteins during Differentiation of Erythroid Cells. Molecular and Cellular Biology, 2011, 31, 1332-1343.	1.1	36
23	Ubiquitous expression of the rtTA2S-M2 inducible system in transgenic mice driven by the human hnRNPA2B1/CBX3 CpG island. BMC Developmental Biology, 2007, 7, 108.	2.1	32
24	Locus control region mediated regulation of adult βâ€globin gene expression. Journal of Cellular Biochemistry, 2008, 105, 9-16.	1.2	30
25	Isolation and Characterization of Hematopoietic Transcription Factor Complexes byin VivoBiotinylation Tagging and Mass Spectrometry. Annals of the New York Academy of Sciences, 2005, 1054, 55-67.	1.8	29
26	A20-binding Inhibitor of Nuclear Factor-κB (NF-κB)-2 (ABIN-2) Is an Activator of Inhibitor of NF-κB (IκB) Kinase α (IKKα)-mediated NF-κB Transcriptional Activity. Journal of Biological Chemistry, 2011, 286, 32277-32288.	1.6	28
27	ERCC1–XPF cooperates with CTCF and cohesin toÂfacilitate the developmental silencing of imprintedÂgenes. Nature Cell Biology, 2017, 19, 421-432.	4.6	28
28	Transcriptional Repression by XPc1, a New Polycomb Homolog in <i>Xenopus laevis</i> Embryos, Is Independent of Histone Deacetylase. Molecular and Cellular Biology, 1999, 19, 3958-3968.	1.1	27
29	A new function of ROD1 in nonsenseâ€mediated mRNA decay. FEBS Letters, 2012, 586, 1101-1110.	1.3	26
30	Isolation of Transcription Factor Complexes by In Vivo Biotinylation Tagging and Direct Binding to Streptavidin Beads. , 2006, 338, 305-323.		25
31	GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis. Nucleic Acids Research, 2013, 41, 4938-4948.	6.5	24
32	Genomic and proteomic analysis of transcription factor TFII-I reveals insight into the response to cellular stress. Nucleic Acids Research, 2014, 42, 7625-7641.	6.5	17
33	GATA-1 Inhibits PU.1 Gene via DNA and Histone H3K9 Methylation of Its Distal Enhancer in Erythroleukemia. PLoS ONE, 2016, 11, e0152234.	1.1	17
34	The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Frontiers in Physiology, 2019, 10, 91.	1.3	17
35	NP-40 reduces contamination by endogenous biotinylated carboxylases during purification of biotin tagged nuclear proteins. Protein Expression and Purification, 2013, 89, 80-83.	0.6	14
36	TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Molecular and Cellular Biology, 2015, 35, 2103-2118.	1.1	14

JOHN STROUBOULIS

#	Article	IF	CITATIONS
37	Defective Erythropoiesis in Transgenic Mice Expressing Dominant-Negative Upstream Stimulatory Factor. Molecular and Cellular Biology, 2009, 29, 5900-5910.	1.1	13
38	GATA1 and PU.1 Bind to Ribosomal Protein Genes in Erythroid Cells: Implications for Ribosomopathies. PLoS ONE, 2015, 10, e0140077.	1.1	13
39	Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Frontiers in Genome Editing, 2021, 3, 618111.	2.7	12
40	HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Research, 2021, 49, 9783-9798.	6.5	12
41	Translational regulation and deregulation in erythropoiesis. Experimental Hematology, 2019, 75, 11-20.	0.2	9
42	Recruitment of Transcription Complexes to Enhancers and the Role of Enhancer Transcription. Biology, 2012, 1, 778-793.	1.3	8
43	Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: Evidence for co-repressor functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1515-1526.	0.9	8
44	Functional interrelationship between TFIIâ€I and E2F transcription factors at specific cell cycle gene loci. Journal of Cellular Biochemistry, 2018, 119, 712-722.	1.2	8
45	Oncogenic Gata1 causes stage-specific megakaryocyte differentiation delay. Haematologica, 2021, 106, 1106-1119.	1.7	8
46	TF Target Mapper: a BLAST search tool for the identification of Transcription Factor target genes. BMC Bioinformatics, 2006, 7, 120.	1.2	7
47	An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference. Experimental Hematology, 2015, 43, 821-837.	0.2	7
48	An embryonic-specific repressor element located 3′ to the Aγ-globin gene influences transcription of the human β-globin locus in transgenic mice. Experimental Hematology, 2004, 32, 224-233.	0.2	6
49	Inducible expression of phospholipid transfer protein (PLTP) in transgenic mice: acute effects of PLTP on lipoprotein metabolism. Transgenic Research, 2007, 16, 503-513.	1.3	6
50	Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells. PLoS Genetics, 2014, 10, e1004339.	1.5	6
51	The Coup-TFII orphan nuclear receptor is an activator of the γ-globin gene. Haematologica, 2021, 106, 474-482.	1.7	6
52	Efficient joining of large DNA fragments for transgenesis. Nucleic Acids Research, 1992, 20, 6109-6110.	6.5	5
53	Mammalian expression vectors for metabolic biotinylation tandem affinity tagging by co-expression in cis of a mammalian codon-optimized BirA biotin ligase. BMC Research Notes, 2018, 11, 390.	0.6	5
54	TFII-I/Gtf2i and Erythro-Megakaryopoiesis. Frontiers in Physiology, 2020, 11, 590180.	1.3	3

JOHN STROUBOULIS

#	Article	IF	CITATIONS
55	Regulation of RNA Polymerase II Transcription Initiation and Elongation by Transcription Factor TFII-I. Frontiers in Molecular Biosciences, 2021, 8, 681550.	1.6	3
56	GATA1: function through disorder. Blood, 2022, 139, 2422-2423.	0.6	2
57	Erythroleukemia: all roads lead to GATA1?. Blood, 2020, 136, 648-649.	0.6	1
58	Preface to IUBMB life special issue on GATA transcription factors in development, differentiation, and disease. IUBMB Life, 2020, 72, 8-9.	1.5	0
59	The Oncoprotein SCL/Tal-1 Associates with the Co-Repressor ETO-2 in Multiprotein Complexes in Erythroid Cells and Megakaryocytes Blood, 2004, 104, 2772-2772.	0.6	0
60	GATA-1 Forms Distinct Activating and Repressive Complexes in Erythroid Cells Blood, 2004, 104, 356-356.	0.6	0
61	Generation and Analysis of Target Genes Libraries of the Erythropoietic Transcription Factor GATA-1 Blood, 2005, 106, 1743-1743.	0.6	0
62	Dynamic Change in the Stochiometry of ETO2 and SCL Governs the Transition to Terminal Differentiation in Erythroid Progenitors Blood, 2006, 108, 1169-1169.	0.6	0
63	Mutation Of The Divalent Metal Transporter (Dmt1) Gene Results In Inefficient Induction Of The Erythroid Transcriptional Program Due To Latter Onset Of GATA-1 and Epor Expression. Blood, 2013, 122, 2197-2197.	0.6	0
64	Erythroid Transcription Factor GATA-1 Binds and Represses PU.1 Gene – Candidate Mechanism Of Epigenetic Repression Of PU.1 and Inefficient Erythropoiesis In MDS. Blood, 2013, 122, 1558-1558.	0.6	0
65	The Regulation of Human β Globin Gene Expression: The Dynamics of Transcriptional Competition in the Human β-Globin Locus. , 1996, , 93-104.		0
66	Cellular and Molecular Basis of Mutant Haemopoietic Transcription Factor GATA1s. Blood, 2014, 124, 607-607.	0.6	0
67	Azacitidine Blocks GATA-1-Mediated Repression of the PU.1 Gene in Human Leukemic Cells. Blood, 2015, 126, 5220-5220.	0.6	0