Christian A Schaer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/533101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive Endocytosis of CD163 Mediates Hemoglobin-Heme Uptake and Determines the Noninflammatory and Protective Transcriptional Response of Macrophages to Hemoglobin. Circulation Research, 2006, 99, 943-950.	4.5	237
2	Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death and Disease, 2016, 7, e2064-e2064.	6.3	107
3	Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1111-1122.	5.6	73
4	Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood, 2010, 116, 5347-5356.	1.4	71
5	Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death and Differentiation, 2013, 20, 1569-1579.	11.2	65
6	Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radical Biology and Medicine, 2015, 89, 931-943.	2.9	59
7	Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. Journal of Clinical Investigation, 2019, 129, 5219-5235.	8.2	57
8	Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death and Differentiation, 2015, 22, 597-611.	11.2	54
9	CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system. Journal of Leukocyte Biology, 2007, 82, 106-110.	3.3	49
10	Heme carrier protein (HCP-1) spatially interacts with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. Journal of Leukocyte Biology, 2008, 83, 325-333.	3.3	46
11	Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. Journal of Clinical Investigation, 2020, 130, 5576-5590.	8.2	36
12	Cerebrospinal fluid hemoglobin drives subarachnoid hemorrhage-related secondary brain injury. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3000-3015.	4.3	24
13	Phenotype-specific recombinant haptoglobin polymers co-expressed with C1r-like protein as optimized hemoglobin-binding therapeutics. BMC Biotechnology, 2018, 18, 15.	3.3	18
14	Chloroquine Interference with Hemoglobin Endocytic Trafficking Suppresses Adaptive Heme and Iron Homeostasis in Macrophages: The Paradox of an Antimalarial Agent. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-10.	4.0	16
15	Heart rate elevations during early sepsis predict death in fluid-resuscitated rats with fecal peritonitis. Intensive Care Medicine Experimental, 2018, 6, 28.	1.9	11
16	Heme-stress activated NRF2 skews fate trajectories of bone marrow cells from dendritic cells towards red pulp-like macrophages in hemolytic anemia. Cell Death and Differentiation, 2022, 29, 1450-1465.	11.2	11
17	Line-selective macrophage activation with an anti-CD40 antibody drives a hemophagocytic syndrome in mice. Blood Advances, 2020, 4, 2751-2761.	5.2	10
18	Haptoglobin treatment prevents cell-free hemoglobin exacerbated mortality in experimental rat sepsis. Intensive Care Medicine Experimental, 2021, 9, 22.	1.9	7

#	Article	IF	CITATIONS
19	Acute Hemolysis and Heme Suppress Anti-CD40 Antibody-Induced Necro-Inflammatory Liver Disease. Frontiers in Immunology, 2021, 12, 680855.	4.8	7
20	Determining the Optimal Normalization Factor of Different Target Arteries for ex vivo Vascular Function Experiments: A New Standardized Procedure. Journal of Vascular Research, 2020, 57, 106-112.	1.4	2