Nozdrin Vadim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/533084/publications.pdf

Version: 2024-02-01

1307594 1199594 30 167 7 12 citations g-index h-index papers 31 31 31 201 docs citations times ranked citing authors all docs

			CITATIONS
	Optical characteristics of LaNiO3 thin films in the terahertz–infrared frequency range. Journal of opplied Physics, 2022, 131, 025305.	2.5	3
2 s	Quantification of solid-phase chemical reactions using the temperature-dependent terahertz pulsed pectroscopy, sum rule, and Arrhenius theory: thermal decomposition of $\hat{l}\pm$ -lactose monohydrate. optics Express, 2022, 30, 9208.	3.4	11
	Composite Multiferroic Terahertz Emitter: Polarization Control via an Electric Field. Physical Review applied, 2022, 17, .	3.8	7
	Dielectric contribution of the IR absorption bands of porous organosilicate glass thin films on a latinum sublayer. Journal Physics D: Applied Physics, 2021, 54, 215304.	2.8	5
	he Influence of Defects on the Absorption of Terahertz Radiation in a CdSiP2 Single Crystal. Optics nd Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 1004-1009.	0.6	2
6 To	erahertz and Infrared Spectroscopy of Dense and Porous Organosilicate Glass Thin Films. Doklady hysics, 2020, 65, 51-56.	0.7	2
	pectral kinetic study of four-component BaF2–ZnF2–CdF2-YbF3 fluoride ceramics by selective laser xcitation. Optical Materials, 2019, 94, 113-120.	3.6	3
	ffect of moisture adsorption on the broadband dielectric response of SiO2-based nanoporous glass. ournal of Applied Physics, 2019, 126, 224303.	2.5	16
9 A	bsorption spectra of single-crystal and optical ceramics of fluorite in terahertz and infrared anges. Proceedings of the Academy of Sciences, 2019, 487, 20-23.	0.1	0
	tudy of the structure of a superconducting state of Co-doped BaFe2As2 multiband compounds. JETP etters, 2014, 100, 328-335.	1.4	0
	ubmillimeter Quasioptical Spectroscopy of Multilayer Conducting and Superconducting Systems. adiophysics and Quantum Electronics, 2014, 56, 620-627.	0.5	2
12 In	ntra-gap Absorption in Superconducting Ba(Fe1â^'x Co x)2As2 Thin Films Studied by a Fabry–Pérot Lesonant Technique. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1227-1231.	1.8	6
	lature of low-energy excitations in La1.87Sr0.13CuO4 superconducting cuprate. JETP Letters, 2012, 94, '08-713.	1.4	1
	wo-band BCS mechanism of superconductivity in a Ba(Fe0.9Co0.1)2As2 high-temperature uperconductor. JETP Letters, 2011, 93, 736-742.	1.4	2
	ow-energy excitations and stripes in superconducting cuprate La1.87Sr0.13CuO4. Solid State communications, 2011, 151, 1681-1685, wo-band Bardeen-Cooper-Schrieffer superconducting state of the iron pnictide compound	1.9	2

#	Article	IF	CITATIONS
19	Upper critical magnetic field of ion-irradiated YBaCuO and NdCeCuO films. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1909-1910.	1.2	1
20	Anisotropic conductivity ofNd1.85Ce0.15CuO4â^Îfilms at submillimeter wavelengths. Physical Review B, 2000, 62, 9822-9826.	3.2	12
21	Submillimeter spectroscopy of tilted Nd1.85Ce0.15CuO4â~Î^films: Observation of a mixed ac-plane excitation. Applied Physics Letters, 2000, 77, 429-431.	3.3	9
22	Anomaly in the upper critical magnetic field common to YBa2Cu3O7â^'δ, HoBa2Cu3O7â^'δ, and Nd1.85Ce0.15CuO4â^'δ irradiated by helium ions. Physics of the Solid State, 1999, 41, 1256-1259.	0.6	4
23	Use of magnetic field screening by high-temperature superconducting films to switch microwave signals. Technical Physics Letters, 1998, 24, 533-535.	0.7	O
24	Hc2 and electron characteristics of superconductors with radiation effects. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1291-1292.	1.2	2
25	Ac magnetic field screening by high-Tc superconductor films and single-crystals. Physics of the Solid State, 1997, 39, 200-202.	0.6	O
26	Upper critical magnetic fields of NbC from clean to dirty limit. European Physical Journal D, 1996, 46, 853-854.	0.4	6
27	Laser-ablated diamond-like carbon coatings on semiconductors and high-Tc superconductors. Surface and Coatings Technology, 1996, 80, 233-236.	4.8	2
28	Pulsed-laser deposition of "diamond-like―carbon coating on YBa2Cu3O7 high-Tc superconductor films. Applied Surface Science, 1996, 92, 457-460.	6.1	6
29	Tunneling and critical-magnetic-field study of superconducting NbC thin films. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2511-2512.	1.2	31
30	Dielectric permittivity of organosilicate glass thin films on a sapphire substrate determined using time-domain THz and Fourier IR spectroscopy. Journal Physics D: Applied Physics, O, , .	2.8	1