Nozdrin Vadim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/533084/publications.pdf

Version: 2024-02-01

1307594 1199594 30 167 7 12 citations g-index h-index papers 31 31 31 201 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tunneling and critical-magnetic-field study of superconducting NbC thin films. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2511-2512 Two-band Bardeen-Cooper-Schrieffer superconducting state of the iron pnictide compound	1.2	31
2			

#	Article	IF	CITATIONS
19	Two-band BCS mechanism of superconductivity in a Ba(Fe0.9Co0.1)2As2 high-temperature superconductor. JETP Letters, 2011, 93, 736-742.	1.4	2
20	Low-energy excitations and stripes in superconducting cuprate La1.87Sr0.13CuO4. Solid State Communications, 2011, 151, 1681-1685.	1.9	2
21	Submillimeter Quasioptical Spectroscopy of Multilayer Conducting and Superconducting Systems. Radiophysics and Quantum Electronics, 2014, 56, 620-627.	0.5	2
22	The Influence of Defects on the Absorption of Terahertz Radiation in a CdSiP2 Single Crystal. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 1004-1009.	0.6	2
23	Terahertz and Infrared Spectroscopy of Dense and Porous Organosilicate Glass Thin Films. Doklady Physics, 2020, 65, 51-56.	0.7	2
24	Upper critical magnetic field of ion-irradiated YBaCuO and NdCeCuO films. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1909-1910.	1.2	1
25	Nature of low-energy excitations in La1.87Sr0.13CuO4 superconducting cuprate. JETP Letters, 2012, 94, 708-713.	1.4	1
26	Dielectric permittivity of organosilicate glass thin films on a sapphire substrate determined using time-domain THz and Fourier IR spectroscopy. Journal Physics D: Applied Physics, O, , .	2.8	1
27	Ac magnetic field screening by high-Tc superconductor films and single-crystals. Physics of the Solid State, 1997, 39, 200-202.	0.6	0
28	Use of magnetic field screening by high-temperature superconducting films to switch microwave signals. Technical Physics Letters, 1998, 24, 533-535.	0.7	0
29	Study of the structure of a superconducting state of Co-doped BaFe2As2 multiband compounds. JETP Letters, 2014, 100, 328-335.	1.4	0
30	Absorption spectra of single-crystal and optical ceramics of fluorite in terahertz and infrared ranges. Proceedings of the Academy of Sciences, 2019, 487, 20-23.	0.1	0