Alaattin Kaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5330695/publications.pdf Version: 2024-02-01

Διλάττινι Κάνα

#	Article	IF	CITATIONS
1	Evidence that conserved essential genes are enriched for pro-longevity factors. GeroScience, 2022, 44, 1995-2006.	4.6	5
2	Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. ELife, 2021, 10, .	6.0	23
3	Beaver and Naked Mole Rat Genomes Reveal Common Paths to Longevity. Cell Reports, 2020, 32, 107949.	6.4	26
4	Molecular signatures of aneuploidy-driven adaptive evolution. Nature Communications, 2020, 11, 588.	12.8	19
5	Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast. Aging, 2019, 11, 4254-4273.	3.1	11
6	Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nature Communications, 2018, 9, 1276.	12.8	80
7	Age-associated molecular changes are deleterious and may modulate life span through diet. Science Advances, 2017, 3, e1601833.	10.3	11
8	Cytochrome <i>c</i> peroxidase facilitates the beneficial use of H ₂ O ₂ in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8678-8680.	7.1	10
9	Methionine restriction and lifeâ€span control. Annals of the New York Academy of Sciences, 2016, 1363, 116-124.	3.8	89
10	Defining molecular basis for longevity traits in natural yeast isolates. Npj Aging and Mechanisms of Disease, 2015, 1, .	4.5	18
11	Regulation of Protein Function by Reversible Methionine Oxidation and the Role of Selenoprotein MsrB1. Antioxidants and Redox Signaling, 2015, 23, 814-822.	5.4	71
12	Evidence that mutation accumulation does not cause aging in <i>Saccharomyces cerevisiae</i> . Aging Cell, 2015, 14, 366-371.	6.7	52
13	Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10685-10690.	7.1	45
14	Thiol Peroxidase Deficiency Leads to Increased Mutational Load and Decreased Fitness in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 198, 905-917.	2.9	11
15	Lifespan Extension Conferred by Endoplasmic Reticulum Secretory Pathway Deficiency Requires Induction of the Unfolded Protein Response. PLoS Genetics, 2014, 10, e1004019.	3.5	74
16	Characterization of a cDNA from Beta maritima that confers nickel tolerance in yeast. Gene, 2014, 538, 251-257.	2.2	5
17	Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nature Communications, 2014, 5, 3592.	12.8	200
18	MsrB1 and MICALs Regulate Actin Assembly and Macrophage Function via Reversible Stereoselective Methionine Oxidation. Molecular Cell, 2013, 51, 397-404.	9.7	196

Alaattin Kaya

#	Article	IF	CITATIONS
19	Diversity of Plant Methionine Sulfoxide Reductases B and Evolution of a Form Specific for Free Methionine Sulfoxide. PLoS ONE, 2013, 8, e65637.	2.5	26
20	Methionine Sulfoxide Reductases Preferentially Reduce Unfolded Oxidized Proteins and Protect Cells from Oxidative Protein Unfolding. Journal of Biological Chemistry, 2012, 287, 24448-24459.	3.4	79
21	Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins. BMC Biochemistry, 2012, 13, 21.	4.4	48
22	Genome-wide identification of genes that play a role in boron stress response in yeast. Genomics, 2011, 97, 106-111.	2.9	18
23	Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis. PLoS ONE, 2011, 6, e27772.	2.5	46
24	Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2729-2734.	7.1	192
25	A 4-Selenocysteine, 2-Selenocysteine Insertion Sequence (SECIS) Element Methionine Sulfoxide Reductase from Metridium senile Reveals a Non-catalytic Function of Selenocysteines. Journal of Biological Chemistry, 2011, 286, 18747-18755.	3.4	21
26	Diversity of Protein and mRNA Forms of Mammalian Methionine Sulfoxide Reductase B1 Due to Intronization and Protein Processing. PLoS ONE, 2010, 5, e11497.	2.5	11
27	Compartmentalization and Regulation of Mitochondrial Function by Methionine Sulfoxide Reductases in Yeast. Biochemistry, 2010, 49, 8618-8625.	2.5	32
28	Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast. Molecular and Cellular Biology, 2009, 29, 3665-3674.	2.3	67
29	Functional Analysis of Free Methionine-R-sulfoxide Reductase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 4354-4364.	3.4	83