Bin-Le Lin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5330622/bin-le-lin-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	407	12	2 O
papers	citations	h-index	g-index
26	490 ext. citations	6.9	3.43
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
25	Urban-scale analysis of nitrogen deposition in Japan: Validation of chemical transport modeling and the sensitivity of anthropogenic nitrogen emissions to dry and wet depositions. <i>Atmospheric Environment</i> , 2022 , 275, 119022	5.3	O
24	An all-in-one tool for multipurpose ecological risk assessment and management (MeRAM) of chemical substances in aquatic environment. <i>Chemosphere</i> , 2021 , 268, 128826	8.4	3
23	Increased nitrogen deposition contributes to plant biodiversity loss in Japan: Insights from long-term historical monitoring data. <i>Environmental Pollution</i> , 2021 , 290, 118033	9.3	2
22	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 1485-1505	3.8	21
21	A 3D-hydrodynamic model for predicting the environmental fate of chemical pollutants in Xiamen Bay, southeast China. <i>Environmental Pollution</i> , 2020 , 256, 113000	9.3	1
20	Occurrence and partitioning behavior of per- and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China. <i>Chemosphere</i> , 2020 , 238, 124578	8.4	29
19	Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory. <i>Chemosphere</i> , 2020 , 238, 124604	8.4	12
18	Assessment of Ammonia as an Energy Carrier from the Perspective of Carbon and Nitrogen Footprints. ACS Sustainable Chemistry and Engineering, 2019,	8.3	7
17	Prediction of Fish Acute Ecotoxicity of Inorganic and Ionized Chemical Substances by Machine Learning. <i>Journal of Computer Aided Chemistry</i> , 2019 , 20, 104-110	0.2	
16	Predicting the Fish Chronic Ecotoxicity of Chemical Substance with New Ecotoxicity Fingerprint and Stacked Ensemble Method on Machine Learning. <i>Journal of Computer Aided Chemistry</i> , 2019 , 20, 111-1	18 ^{0.2}	
15	PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	7
14	Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 54, 1060-1072	16.2	27
13	Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds. <i>Ecological Modelling</i> , 2014 , 271, 32-51	3	43
12	Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis. <i>Energy Policy</i> , 2012 , 44, 23-33	7.2	18
11	Biofuel vs. biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan. <i>Energy</i> , 2012 , 46, 442-450	7.9	29
10	A new approach to estimate concentrations of alcohol ethoxylate in rivers in Japan for screening-level risk assessment. <i>Journal of Risk Research</i> , 2011 , 14, 1109-1126	4.2	
9	System approach for evaluating the potential yield and plantation of Jatropha curcas L. on a global scale. <i>Environmental Science & Environmental Scie</i>	10.3	29

LIST OF PUBLICATIONS

1	Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems. <i>Ecological Modelling</i> , 2000 , 135, 89-110	3	67	
2	A modelling approach to global nitrate leaching caused by anthropogenic fertilisation. <i>Water Research</i> , 2001 , 35, 1961-8	12.5	40	
3	Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacteria/granular activated carbon sludge system. <i>Water Research</i> , 2002 , 36, 1076-83	12.5	4	
4	Approaches for establishing predicted-no-effect concentrations for population-level ecological risk assessment in the context of chemical substances management. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 4833-40	10.3	32	
5	Simulation of the population-level effects of 4-nonylphenol on wild Japanese medaka (Oryzias latipes). <i>Ecological Modelling</i> , 2006 , 197, 350-360	3	10	
6	A feed-forward artificial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 71, 172-86	7	15	
7	The fragmented testis method: development and its advantages of a new quantitative evaluation technique for detection of testis-ova in male fish. <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 286	5- 3 2	5	
8	Extrapolation of available acute and chronic toxicity test data to population-level effects for ecological risk management of chemicals. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1557-66	3.8	6	