Bin-Le Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5330622/publications.pdf

Version: 2024-02-01

623699 642715 26 581 14 23 citations h-index g-index papers 26 26 26 798 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems. Ecological Modelling, 2000, 135, 89-110.	2.5	87
2	A Modelling Approach to Global Nitrate Leaching Caused by Anthropogenic Fertilisation. Water Research, 2001, 35, 1961-1968.	11.3	63
3	Occurrence and partitioning behavior of per- and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China. Chemosphere, 2020, 238, 124578.	8.2	54
4	Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds. Ecological Modelling, 2014, 271, 32-51.	2.5	52
5	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environmental Toxicology and Chemistry, 2020, 39, 1485-1505.	4.3	38
6	Approaches for Establishing Predicted-No-Effect Concentrations for Population-Level Ecological Risk Assessment in the Context of Chemical Substances Management. Environmental Science & Eamp; Technology, 2005, 39, 4833-4840.	10.0	37
7	Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory. Chemosphere, 2020, 238, 124604.	8.2	34
8	Biofuel vs. biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan. Energy, 2012, 46, 442-450.	8.8	32
9	System Approach for Evaluating the Potential Yield and Plantation of <i>Jatropha curcas L.</i> on a Global Scale. Environmental Science & Environmenta	10.0	31
10	Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II. Renewable and Sustainable Energy Reviews, 2016, 54, 1060-1072.	16.4	31
11	Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis. Energy Policy, 2012, 44, 23-33.	8.8	22
12	Simulation of the population-level effects of 4-nonylphenol on wild Japanese medaka (Oryzias latipes). Ecological Modelling, 2006, 197, 350-360.	2.5	17
13	A feed-forward artificial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate. Ecotoxicology and Environmental Safety, 2008, 71, 172-186.	6.0	17
14	Assessment of Ammonia as an Energy Carrier from the Perspective of Carbon and Nitrogen Footprints. ACS Sustainable Chemistry and Engineering, 2019, , .	6.7	15
15	PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	10
16	Increased nitrogen deposition contributes to plant biodiversity loss in Japan: Insights from long-term historical monitoring data. Environmental Pollution, 2021, 290, 118033.	7.5	10
17	Extrapolation of available acute and chronic toxicity test data to populationâ€evel effects for ecological risk management of chemicals. Environmental Toxicology and Chemistry, 2009, 28, 1557-1566.	4.3	8
18	A 3D-hydrodynamic model for predicting the environmental fate of chemical pollutants in Xiamen Bay, southeast China. Environmental Pollution, 2020, 256, 113000.	7.5	7

#	Article	IF	CITATIONS
19	The fragmented testis method: Development and its advantages of a new quantitative evaluation technique for detection of testis–ova in male fish. Ecotoxicology and Environmental Safety, 2009, 72, 286-292.	6.0	5
20	Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacteria/granular activated carbon sludge system. Water Research, 2002, 36, 1076-1083.	11.3	4
21	An all-in-one tool for multipurpose ecological risk assessment and management (MeRAM) of chemical substances in aquatic environment. Chemosphere, 2021, 268, 128826.	8.2	3
22	Urban-scale analysis of nitrogen deposition in Japan: Validation of chemical transport modeling and the sensitivity of anthropogenic nitrogen emissions to dry and wet depositions. Atmospheric Environment, 2022, 275, 119022.	4.1	2
23	A new approach to estimate concentrations of alcohol ethoxylate in rivers in Japan for screening-level risk assessment. Journal of Risk Research, 2011, 14, 1109-1126.	2.6	1
24	Managing Risk to Ecological Populations. , 2007, , 7-39.		1
25	Prediction of Fish Acute Ecotoxicity of Inorganic and Ionized Chemical Substances by Machine Learning. Journal of Computer Aided Chemistry, 2019, 20, 104-110.	0.3	0
26	Predicting the Fish Chronic Ecotoxicity of Chemical Substance with New Ecotoxicity Fingerprint and Stacked Ensemble Method on Machine Learning. Journal of Computer Aided Chemistry, 2019, 20, 111-118.	0.3	0