Barbara Trzebicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5330144/publications.pdf

Version: 2024-02-01

126907 118850 4,750 153 33 62 citations h-index g-index papers 153 153 153 5712 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Poly(oligoethylene glycol methacrylate) Starâ€Shaped Copolymers with Hydroxypropyl Methacrylate Cores. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	2
2	Design and development of DSPC:DAP:PDMAEMA-b-PLMA nanostructures: from the adumbration of their morphological characteristics to in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127768.	4.7	4
3	Synthesis, Hydrophilicity and Micellization of Coil-Brush Polystyrene-b-(polyglycidol-g-polyglycidol) Copolymer—Comparison with Linear Polystyrene-b-polyglycidol. Polymers, 2022, 14, 253.	4.5	2
4	Recent Advances in Boron―and Nitrogenâ€Doped Carbonâ€Based Materials and Their Various Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	48
5	Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. European Polymer Journal, 2022, 166, 111048.	5.4	5
6	Investigation of the Possibilities for Removal of Phenolic Toxic Compounds from Water by Nanoporous Carbon from Polymer By-Products. Applied Sciences (Switzerland), 2022, 12, 2243.	2.5	1
7	Amphiphilic P(OEGMA-co-DIPAEMA) Hyperbranched Copolymer/Magnetic Nanoparticle Hybrid Nanostructures by Co-Assembly. Nanomanufacturing, 2022, 2, 53-68.	3.6	4
8	Formulation and Evaluation of Hybrid Niosomal In Situ Gel for Intravesical Co-Delivery of Curcumin and Gentamicin Sulfate. Pharmaceutics, 2022, 14, 747.	4.5	13
9	Poly[(vinyl benzyl trimethylammonium chloride)]-based nanoparticulate copolymer structures encapsulating insulin. European Polymer Journal, 2022, 169, 111158.	5.4	5
10	Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery. Biomedicines, 2022, 10, 1228.	3.2	1
11	A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Materials, 2021, 34, 735-754.	18.0	142
12	Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 21-34.	4.3	22
13	Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 152-187.	12.3	44
14	Graphene transfer methods: A review. Nano Research, 2021, 14, 3756-3772.	10.4	95
15	Encapsulation of Curcumin in Polystyrene-Based Nanoparticles—Drug Loading Capacity and Cytotoxicity. ACS Omega, 2021, 6, 12168-12178.	3.5	18
16	HEMA in Polymers with Thermoresponsive Properties. Polymer Reviews, 2021, 61, 714-735.	10.9	7
17	The Elucidation of the Molecular Mechanism of the Extrusion Process. Materials, 2021, 14, 4278.	2.9	7
18	The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers, 2021, 13, 2607.	4.5	6

#	Article	IF	Citations
19	The Role of Polymer Structure in Formation of Various Nano- and Microstructural Materials: 30 Years of Research in the Laboratory of Nano- and Microstructural Materials at the Centre of Polymer and Carbon Materials PAS. Polymers, 2021, 13, 2892.	4.5	0
20	Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, , .	3.4	6
21	Unprecedented formation of sterically stabilized phospholipid liposomes of cuboidal morphology. Nanoscale, 2021, 13, 15210-15214.	5.6	2
22	Thermal Behaviour of Common Thermoresponsive Polymers in Phosphate Buffer and in Its Salt Solutions. Polymers, 2021, 13, 90.	4.5	16
23	Cationic (Co)polymers Based on N-Substituted Polyacrylamides as Carriers of Bio-macromolecules: Polyplexes, Micelleplexes, and Spherical Nucleic Acidlike Structures. Biomacromolecules, 2021, 22, 971-983.	5.4	6
24	Functional block copolymers bearing pendant cinnamyl groups for enhanced solubilization of caffeic acid phenethyl ester. Polymer Journal, 2020, 52, 435-447.	2.7	12
25	pH-responsive chimeric liposomes: From nanotechnology to biological assessment. International Journal of Pharmaceutics, 2020, 574, 118849.	5.2	8
26	A thermal analysis and physicochemical study on thermoresponsive chimeric liposomal nanosystems. Journal of Thermal Analysis and Calorimetry, 2020, 141, 751-766.	3.6	7
27	Amniotic Stem Cells Cultured on Thermoresponsive Polymers Allow Obtaining a Full Cell Sheet. Transplantation Proceedings, 2020, 52, 2198-2203.	0.6	2
28	Thermal Transitions in P3HT:PC60BM Films Based on Electrical Resistance Measurements. Polymers, 2020, 12, 1458.	4.5	7
29	Thermoresponsive Nanogels of Modified Poly((di(ethylene glycol) methyl ether) Tj ETQq1 1 0.784314 rgBT /Over	lock_10 T1	^F 50 342 Td (
30	Destruction of <i>Pseudomonas aeruginosa</i> pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles. Biofouling, 2020, 36, 679-695.	2.2	6
31	Facile production of ultra-fine silicon nanoparticles. Royal Society Open Science, 2020, 7, 200736.	2.4	6
32	Largeâ€Area Singleâ€Crystal Graphene via Selfâ€Organization at the Macroscale. Advanced Materials, 2020, 32, 2002755.	21.0	6
33	Graphene: Largeâ€Area Singleâ€Crystal Graphene via Selfâ€Organization at the Macroscale (Adv. Mater.) Tj ETQo	q1 <u>1</u> 0.78	4314 rgBT /○
34	The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183361.	2.6	21
35	Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli-responsive polymeric stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124678.	4.7	13
36	Poly[oligo(ethylene glycol) methacrylate]-b-poly[(vinyl benzyl trimethylammonium chloride)] Based Multifunctional Hybrid Nanostructures Encapsulating Magnetic Nanoparticles and DNA. Polymers, 2020, 12, 1283.	4.5	9

#	Article	IF	CITATIONS
37	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Advanced Materials Interfaces, 2020, 7, 1902024.	3.7	27
38	Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions. Polymers, 2020, 12, 200.	4.5	9
39	Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. Journal of Physical Chemistry B, 2020, 124, 3229-3251.	2.6	38
40	pHâ€Driven Morphological Diversity in Poly[nâ€Butyl Acrylate―block â€(2â€(Dimethylamino)Ethyl Acrylate)] Amphiphilic Copolymer Solutions. Macromolecular Rapid Communications, 2019, 40, 1900477.	3.9	9
41	Room temperature single-step synthesis of metal decorated boron-rich nanowires via laser ablation. Nano Convergence, 2019, 6, 14.	12.1	3
42	Stimuli-Responsive Lyotropic Liquid Crystalline Nanosystems with Incorporated Poly(2-Dimethylamino) Tj ETQq0 () 9.ggT/C)verlock 10 T
43	PEO-b-PCL grafted niosomes: The cooperativilty of amphiphilic components and their properties in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 177, 338-345.	5.0	15
44	Linear Amphiphilic Polyglycidol/Poly(Îμ-caprolactone) Block Copolymers Prepared via "Click― Chemistry-Based Concept. Macromolecules, 2019, 52, 3435-3447.	4.8	15
45	Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst. Communications Chemistry, 2019, 2, .	4.5	6
46	Thermoresponsive P(HEMA- <i>co</i> -OEGMA) copolymers: synthesis, characteristics and solution behavior. RSC Advances, 2019, 9, 40966-40974.	3.6	16
47	Enhancement of the growth of polymer brushes via ATRP initiated from ions-releasing indium tin oxide substrates. European Polymer Journal, 2019, 112, 817-821.	5.4	12
48	A comparative study on simple and practical chemical gas sensors from chemically modified graphene films. Materials Research Express, 2019, 6, 015607.	1.6	5
49	Effect of sodium dodecyl sulfate on solution behavior of thermoresponsive polymers and their mixtures. Polimery, 2019, 64, 469-479.	0.7	3
50	Fibroblast and keratinocyte crosstalk: the effect of a poly(tri[ethylene glycol] ethyl ether) Tj ETQq0 0 0 rgBT /Over 2019, 29, 126-140.	rlock 10 Tf 0.6	f 50 227 Td (1
51	Polymers in medicine direction of development. Polimery, 2019, 64, 645-655.	0.7	0
52	On stress $\hat{a}\in$ " strain responses and photoinduced properties of some azo polymers. Polymer, 2018, 140, 117-121.	3.8	11
53	Stable star polymer nanolayers and their thermoresponsiveness as a tool for controlled culture and detachment of fibroblast sheets. Journal of Materials Chemistry B, 2018, 6, 641-655.	5.8	11
54	Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced inâ€house and ⟨i⟩in vitro⟨/i⟩ cultured human fibroblasts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 726-733.	3.4	14

#	Article	IF	Citations
55	Single Cr atom catalytic growth of graphene. Nano Research, 2018, 11, 2405-2411.	10.4	41
56	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	19.5	385
57	Aqueous solution behaviour and solubilisation properties of octadecyl cationic gemini surfactants and their comparison with their amide gemini analogues. Soft Matter, 2018, 14, 754-764.	2.7	10
58	Micellisation of polystyrene-b-polyglycidol copolymers in water solution. European Polymer Journal, 2018, 99, 72-79.	5.4	8
59	Carbon foam based on epoxy/novolac precursor as porous micro-filler of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 105, 28-39.	7.6	22
60	Photocrosslinking of Polyglycidol and Its Derivative: Route to Thermoresponsive Hydrogels. Photochemistry and Photobiology, 2018, 94, 52-60.	2.5	8
61	Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. European Polymer Journal, 2018, 109, 391-401.	5.4	16
62	Development and Evaluation of Stimuli-Responsive Chimeric Nanostructures. AAPS PharmSciTech, 2018, 19, 2971-2989.	3.3	11
63	Branched polyglycidol and its derivatives grafted-from poly(ethylene terephthalate) and silica as surfaces that reduce protein fouling. European Polymer Journal, 2018, 105, 313-322.	5.4	13
64	Studying the colloidal behavior of chimeric liposomes by cryo-TEM, micro-differential scanning calorimetry and high-resolution ultrasound spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 539-547.	4.7	23
65	Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. International Journal of Pharmaceutics, 2018, 550, 57-70.	5.2	34
66	Multi-layered graphenic structures as the effect of chemical modification of thermally treated anthracite. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 405-416.	2.1	7
67	Thermoresponsive polymer surfaces and their application in tissue engineering. Polimery, 2018, 63, 327-338.	0.7	12
68	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	14.6	108
69	Noncovalent azopoly(ester imide)s: Experimental study on structure-property relations and theoretical approach for prediction of glass transition temperature and hydrogen bond formation. Polymer, 2017, 113, 53-66.	3.8	22
70	Super-macroporous dextran cryogels via UV-induced crosslinking: synthesis and characterization. Polymer International, 2017, 66, 1306-1311.	3.1	18
71	Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as the stabilizing agent. Journal of Dispersion Science and Technology, 2017, 38, 1647-1655.	2.4	12
72	Thermoresponsive polymer-peptide/protein conjugates. Progress in Polymer Science, 2017, 68, 35-76.	24.7	64

#	Article	IF	Citations
73	Morphological diversity of block copolymer/lipid chimeric nanostructures. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	18
74	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234, 53-85.	3.9	114
7 5	Double stimuli responsive mixed aggregates from poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667	Td (acid)-ł 3.3	olock-poly(Î 4
76	In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation. Nano Letters, 2017, 17, 4725-4732.	9.1	13
77	Thermoresponsive poly[oligo(ethylene glycol) methacrylate]s and their bioconjugates – synthesis and solution behavior. Polimery, 2017, 62, 298-310.	0.7	13
78	Polymer-peptide/protein conjugates on the surface. Current Organic Chemistry, 2017, 21, .	1.6	3
79	Mixed lipid/polymer nanostructures: From advanced materials to drug delivery systems. Advanced Materials Letters, 2017, 8, 428-434.	0.6	O
80	Graphene-Like ZnO: A Mini Review. Crystals, 2016, 6, 100.	2.2	86
81	Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature. ACS Nano, 2016, 10, 6323-6330.	14.6	15
82	Thermoresponsive poly[tri(ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation. Colloids and Surfaces B: Biointerfaces, 2016, 145, 185-193.	5.0	13
83	Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes. Journal of Materials Science: Materials in Medicine, 2016, 27, 111.	3.6	25
84	Chimeric lipid/block copolymer nanovesicles: Physico-chemical and bio-compatibility evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 295-309.	4.3	29
85	Influence of unique structure of glassy carbon on morphology and properties of its epoxy-based binary composites and hybrid composites with carbon nanotubes. Composites Science and Technology, 2016, 134, 72-80.	7.8	19
86	Self-organization and solubilization properties of gemini hydrotropic compounds in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 264-275.	4.7	6
87	Smart Polymeric Nanocarriers of Met-enkephalin. Biomacromolecules, 2016, 17, 2691-2700.	5.4	18
88	Multifunctional block copolymer nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against tumor cells. European Polymer Journal, 2016, 81, 24-33.	5.4	32
89	Synthesis of silver nanoparticles by <i>Bacillus subtilis</i> Tâ€1Âgrowing on agroâ€industrial wastes and producing biosurfactant. IET Nanobiotechnology, 2016, 10, 62-68.	3.8	14

Influence of supramolecular interactions on photoresponsive behavior of azobenzene poly(amide) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50 2

6

90

#	Article	IF	CITATIONS
91	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	3.7	70
92	Controlling the Crystallinity of Thermoresponsive Poly(2-oxazoline)-Based Nanolayers to Cell Adhesion and Detachment. Biomacromolecules, 2015, 16, 2805-2813.	5.4	38
93	Hybrid nanoparticles obtained from mixed mesoglobules. Polymer, 2015, 68, 65-73.	3.8	16
94	Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2015, 119, 13363-13368.	3.1	57
95	Crystallization of Poly(2-isopropyl-2-oxazoline) in Organic Solutions. Macromolecules, 2015, 48, 1852-1859.	4.8	26
96	Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891.	3.6	32
97	Synergy in hybrid polymer/nanocarbon composites. A review. Composites Part A: Applied Science and Manufacturing, 2015, 73, 204-231.	7.6	257
98	Nonviral Plasmid DNA Carriers Based on $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle \hat{a} \in ^2$ -Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers. Biomacromolecules, 2015, 16, 3275-3285.	5.4	28
99	Aggregation behavior of anionic sulfonate gemini surfactants with dodecylphenyl tails. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 336-344.	4.7	28
100	Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and "click― chemistry. Nanoscale, 2015, 7, 16823-16833.	5.6	13
101	Polymers for peptide/protein arrays. Polimery, 2015, 60, 75-86.	0.7	1
102	Properties of poly(acrylic acid)/modified starch compositions applied as a new polymeric binders. Polimery, 2015, 60, 179-185.	0.7	0
103	Polymeric Nanoparticle Engineering: From Temperature-Responsive Polymer Mesoglobules to Gene Delivery Systems. Biomacromolecules, 2014, 15, 4377-4395.	5.4	49
104	Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment. Journal of Materials Science: Materials in Medicine, 2014, 25, 1149-1163.	3.6	60
105	Nanostructures by self-assembly of polyglycidol-derivatized lipids. RSC Advances, 2014, 4, 37208-37219.	3.6	16
106	Amphiphilic dendritic copolymers of tert-butyl-glycidylether and glycidol as a nanocontainer for an anticancer ruthenium complex. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.3	5
107	Relevance of the Poly(ethylene glycol) Linkers in Peptide Surfaces for Proteases Assays. Langmuir, 2014, 30, 5015-5025.	3.5	12
108	Polycationic star polymers with hyperbranched cores for gene delivery. Polymer, 2014, 55, 4551-4562.	3.8	32

#	Article	IF	Citations
109	Hydroxyl end-functionalized poly(2-isopropyl oxazoline)s used as nano-sized colloidal templates for preparation of hollow polymeric nanocapsules. Polymer, 2013, 54, 5166-5173.	3.8	20
110	Thermosensitive PNIPAM-peptide conjugate – Synthesis and aggregation. European Polymer Journal, 2013, 49, 499-509.	5.4	28
111	(Co)polymers of oligo(ethylene glycol) methacrylates—temperatureâ€induced aggregation in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 614-623.	2.3	47
112	Modified polyglycidol based nanolayers of switchable philicity and their interactions with skin cells. European Polymer Journal, 2013, 49, 106-117.	5 . 4	17
113	Poly[tri(ethylene glycol) ethyl ether methacrylate]-Coated Surfaces for Controlled Fibroblasts Culturing. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2197-2207.	8.0	45
114	Synthesis and characterisation of PEG-peptide surfaces for proteolytic enzyme detection. Analytical and Bioanalytical Chemistry, 2013, 405, 9049-9059.	3.7	10
115	Solution behavior of star polymers with oligo(ethylene glycol) methyl ether methacrylate arms. Polymer, 2012, 53, 5619-5631.	3.8	24
116	Bioactive mesoglobules of poly(di(ethylene glycol) monomethyl ether methacrylate)–peptide conjugate. Journal of Polymer Science Part A, 2012, 50, 3104-3115.	2.3	21
117	Thermosensitive star polymers â€" synthesis and properties. Polimery, 2012, 57, 441-448.	0.7	1
118	Starâ€Like Polymers of <i>tert</i> à€Butyl Acrylate via Controlled Radical Polymerization – Synthesis and Properties. Macromolecular Symposia, 2011, 308, 93-100.	0.7	2
119	Formation of mesoglobules in aqueous media from thermo-sensitive poly(ethoxytriethyleneglycol) Tj ETQq $1\ 1\ 0.0$	784314 rg	BT ₁ Overlock
120	Star macromolecules with hyperbranched poly(arylene oxindole) cores and polyacid arms: Synthesis and solution behavior. Journal of Polymer Science Part A, 2011, 49, 5074-5086.	2.3	9
121	Star poly(2â€ethylâ€2â€oxazoline)sâ€"synthesis and thermosensitivity. Polymer International, 2011, 60, 1001-1009.	3.1	72
122	Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties. European Polymer Journal, 2011, 47, 981-988.	5.4	19
123	Synthesis and thermoresponsive properties of four arm, amphiphilic poly(tert-butyl-glycidylether)-block-polyglycidol stars. Polymer, 2011, 52, 250-257.	3.8	25
124	Thermosensitive dendritic stars of tert-butyl-glycidylether and glycidol – Synthesis and encapsulation properties. Polymer, 2011, 52, 3526-3536.	3.8	21
125	Organization of poly(2-ethyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) copolymers in water solution. Polymer, 2010, 51, 2486-2493.	3.8	27
126	Solution behavior of 4-arm poly(tert-butyl acrylate) star polymers. European Polymer Journal, 2010, 46, 2341-2351.	5.4	25

#	Article	IF	Citations
127	Mesoglobules of random copolyethers as templates for nanoparticles. Journal of Polymer Science Part A, 2010, 48, 4074-4083.	2.3	19
128	Nanoâ€Templates from Thermoresponsive Poly(ethoxytriethyleneglycol acrylate) for Polymeric Nanoâ€Capsules. Macromolecular Symposia, 2009, 278, 89-95.	0.7	14
129	Coreâ€shell nanoparticles with hyperbranched poly(aryleneâ€oxindole) interiors. Journal of Polymer Science Part A, 2009, 47, 1120-1135.	2.3	37
130	Synthesis and characterization of well-defined poly(tert-butyl acrylate) star polymers. European Polymer Journal, 2009, 45, 1979-1993.	5.4	36
131	Polyether nanoparticles from covalently crosslinked copolymer micelles. Journal of Colloid and Interface Science, 2008, 325, 141-148.	9.4	28
132	Thermosensitive nanospheres of low-density core – An approach to hollow nanoparticles. Polymer, 2008, 49, 1467-1474.	3.8	56
133	Thermoresponsive hydrogels of hydrophobically modified polyglycidol. E-Polymers, 2007, 7, .	3.0	3
134	The influence of hydrophobic substitution on self-association of poly(ethylene oxide)-b-poly(n-alkyl) Tj ETQq0 0 (O rgBT /Ov 3.8	erlock 10 Tf 5 14
135	Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Progress in Polymer Science, 2007, 32, 1275-1343.	24.7	692
136	Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. European Polymer Journal, 2006, 42, 2497-2506.	5.4	46
137	Synthesis and self-association in aqueous media of poly(ethylene oxide)/poly(ethyl glycidyl carbamate) amphiphilic block copolymers. Polymer, 2006, 47, 4905-4915.	3.8	46
138	Core-shell polyacrylate and polystyrene-block-polyacrylate stars. Polymer, 2005, 46, 8555-8564.	3.8	22
139	Polyether Core-Shell Cylinder-Polymerization of Polyglycidol Macromonomers. Macromolecular Chemistry and Physics, 2005, 206, 2018-2026.	2.2	27
140	Star-shaped polymers with branched poly[p-(halogenmethyl)styrene] cores. Polimery, 2005, 50, 555-561.	0.7	2
141	Controlled radical polymerization of p-(iodomethyl)styrene—a route to branched and star-like structures. Polymer, 2004, 45, 9-18.	3.8	34
142	High molecular arborescent polyoxyethylene with hydroxyl containing shell. Polymer, 2004, 45, 1755-1762.	3.8	55
143	Novel reactive thermosensitive polyethers– control of transition point. Macromolecular Symposia, 2004, 210, 419-426.	0.7	23
144	Hydrophobically modified polyglycidol - the control of lower critical solution temperature. Polymer Bulletin, 2003, 50, 47-54.	3.3	23

#	Article	IF	CITATIONS
145	Glutaraldehyde-crosslinked poly(glycidol-block-ethylene oxide-block-glycidol) networks with temperatureresponsive swelling behaviour. E-Polymers, 2003, 3, .	3.0	1
146	New thermo-sensitive reactive polyethers basing on glycidol. Polimery, 2003, 48, 484-489.	0.7	2
147	Amphiphilic core-shell PEO stars by Williamson etherification reaction. Polymer Bulletin, 2002, 49, 9-16.	3.3	18
148	Synthesis of High-Molar Mass Arborescent-Branched Polyglycidol via Sequential Grafting. Macromolecular Rapid Communications, 2001, 22, 1272.	3.9	49
149	Hydrophilic and amphiphilic copolymers of 2,3-epoxypropanol-1. Macromolecular Symposia, 2000, 153, 233-242.	0.7	49
150	Polyglycidol-block-poly(ethylene oxide)-block-polyglycidol: synthesis and swelling properties. Reactive and Functional Polymers, 1999, 42, 31-36.	4.1	59
151	Poly(α- t -butoxy-ω-styrylo-glycidol): a new reactive surfactant. Polymer Bulletin, 1998, 40, 461-468.	3.3	59
152	Cationic polymerization of glycidol. Polymer structure and polymerization mechanism. Macromolecular Chemistry and Physics, 1995, 196, 1963-1970.	2.2	129
153	Synthesis of polyvinyl acetate-graft-poly-2-oxazolines. Polymer International, 1994, 34, 157-161.	3.1	10