Barbara Trzebicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5330144/publications.pdf Version: 2024-02-01

		126907	118850
153	4,750	33	62
papers	citations	h-index	g-index
153	153	153	5712
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Progress in Polymer Science, 2007, 32, 1275-1343.	24.7	692
2	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	19.5	385
3	Synergy in hybrid polymer/nanocarbon composites. A review. Composites Part A: Applied Science and Manufacturing, 2015, 73, 204-231.	7.6	257
4	A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Materials, 2021, 34, 735-754.	18.0	142
5	Cationic polymerization of glycidol. Polymer structure and polymerization mechanism. Macromolecular Chemistry and Physics, 1995, 196, 1963-1970.	2.2	129
6	Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications. Synthetic Metals, 2017, 234, 53-85.	3.9	114
7	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	14.6	108
8	Graphene transfer methods: A review. Nano Research, 2021, 14, 3756-3772.	10.4	95
9	Graphene-Like ZnO: A Mini Review. Crystals, 2016, 6, 100.	2.2	86
10	Star poly(2â€ethylâ€2â€oxazoline)s—synthesis and thermosensitivity. Polymer International, 2011, 60, 1001-1009.	3.1	72
11	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	3.7	70
12	Thermoresponsive polymer-peptide/protein conjugates. Progress in Polymer Science, 2017, 68, 35-76.	24.7	64
13	Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment. Journal of Materials Science: Materials in Medicine, 2014, 25, 1149-1163.	3.6	60
14	Poly(α- t -butoxy-ω-styrylo-glycidol): a new reactive surfactant. Polymer Bulletin, 1998, 40, 461-468.	3.3	59
15	Polyglycidol-block-poly(ethylene oxide)-block-polyglycidol: synthesis and swelling properties. Reactive and Functional Polymers, 1999, 42, 31-36.	4.1	59
16	Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2015, 119, 13363-13368.	3.1	57
17	Thermosensitive nanospheres of low-density core – An approach to hollow nanoparticles. Polymer, 2008, 49, 1467-1474.	3.8	56
18	High molecular arborescent polyoxyethylene with hydroxyl containing shell. Polymer, 2004, 45, 1755-1762	3.8	55

#	Article	IF	CITATIONS
19	Hydrophilic and amphiphilic copolymers of 2,3-epoxypropanol-1. Macromolecular Symposia, 2000, 153, 233-242.	0.7	49
20	Synthesis of High-Molar Mass Arborescent-Branched Polyglycidol via Sequential Grafting. Macromolecular Rapid Communications, 2001, 22, 1272.	3.9	49
21	Polymeric Nanoparticle Engineering: From Temperature-Responsive Polymer Mesoglobules to Gene Delivery Systems. Biomacromolecules, 2014, 15, 4377-4395.	5.4	49
22	Recent Advances in Boron―and Nitrogenâ€Đoped Carbonâ€Based Materials and Their Various Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	48
23	(Co)polymers of oligo(ethylene glycol) methacrylates—temperatureâ€induced aggregation in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 614-623.	2.3	47
24	Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. European Polymer Journal, 2006, 42, 2497-2506.	5.4	46
25	Synthesis and self-association in aqueous media of poly(ethylene oxide)/poly(ethyl glycidyl carbamate) amphiphilic block copolymers. Polymer, 2006, 47, 4905-4915.	3.8	46
26	Poly[tri(ethylene glycol) ethyl ether methacrylate]-Coated Surfaces for Controlled Fibroblasts Culturing. ACS Applied Materials & Interfaces, 2013, 5, 2197-2207.	8.0	45
27	Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 152-187.	12.3	44
28	Single Cr atom catalytic growth of graphene. Nano Research, 2018, 11, 2405-2411.	10.4	41
29	Controlling the Crystallinity of Thermoresponsive Poly(2-oxazoline)-Based Nanolayers to Cell Adhesion and Detachment. Biomacromolecules, 2015, 16, 2805-2813.	5.4	38
30	Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. Journal of Physical Chemistry B, 2020, 124, 3229-3251.	2.6	38
31	Coreâ€shell nanoparticles with hyperbranched poly(aryleneâ€oxindole) interiors. Journal of Polymer Science Part A, 2009, 47, 1120-1135.	2.3	37
32	Synthesis and characterization of well-defined poly(tert-butyl acrylate) star polymers. European Polymer Journal, 2009, 45, 1979-1993.	5.4	36
33	Controlled radical polymerization of p-(iodomethyl)styrene—a route to branched and star-like structures. Polymer, 2004, 45, 9-18.	3.8	34
34	Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. International Journal of Pharmaceutics, 2018, 550, 57-70.	5.2	34
35	Polycationic star polymers with hyperbranched cores for gene delivery. Polymer, 2014, 55, 4551-4562.	3.8	32
36	Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891.	3.6	32

#	Article	IF	CITATIONS
37	Multifunctional block copolymer nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against tumor cells. European Polymer Journal, 2016, 81, 24-33.	5.4	32
38	Chimeric lipid/block copolymer nanovesicles: Physico-chemical and bio-compatibility evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 295-309.	4.3	29
39	Polyether nanoparticles from covalently crosslinked copolymer micelles. Journal of Colloid and Interface Science, 2008, 325, 141-148.	9.4	28
40	Thermosensitive PNIPAM-peptide conjugate – Synthesis and aggregation. European Polymer Journal, 2013, 49, 499-509.	5.4	28
41	Nonviral Plasmid DNA Carriers Based on <i>N</i> , <i>N</i> ′-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers. Biomacromolecules, 2015, 16, 3275-3285.	5.4	28
42	Aggregation behavior of anionic sulfonate gemini surfactants with dodecylphenyl tails. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 336-344.	4.7	28
43	Polyether Core-Shell Cylinder-Polymerization of Polyglycidol Macromonomers. Macromolecular Chemistry and Physics, 2005, 206, 2018-2026.	2.2	27
44	Organization of poly(2-ethyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) copolymers in water solution. Polymer, 2010, 51, 2486-2493.	3.8	27
45	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Advanced Materials Interfaces, 2020, 7, 1902024.	3.7	27
46	Crystallization of Poly(2-isopropyl-2-oxazoline) in Organic Solutions. Macromolecules, 2015, 48, 1852-1859.	4.8	26
47	Solution behavior of 4-arm poly(tert-butyl acrylate) star polymers. European Polymer Journal, 2010, 46, 2341-2351.	5.4	25
48	Synthesis and thermoresponsive properties of four arm, amphiphilic poly(tert-butyl-glycidylether)-block-polyglycidol stars. Polymer, 2011, 52, 250-257.	3.8	25
49	Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes. Journal of Materials Science: Materials in Medicine, 2016, 27, 111.	3.6	25
50	Solution behavior of star polymers with oligo(ethylene glycol) methyl ether methacrylate arms. Polymer, 2012, 53, 5619-5631.	3.8	24
51	Hydrophobically modified polyglycidol - the control of lower critical solution temperature. Polymer Bulletin, 2003, 50, 47-54.	3.3	23
52	Novel reactive thermosensitive polyethers– control of transition point. Macromolecular Symposia, 2004, 210, 419-426.	0.7	23
53	Studying the colloidal behavior of chimeric liposomes by cryo-TEM, micro-differential scanning calorimetry and high-resolution ultrasound spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 539-547.	4.7	23

 $_{54}$ Stimuli-Responsive Lyotropic Liquid Crystalline Nanosystems with Incorporated Poly(2-Dimethylamino) Tj ETQq0 0 $\begin{array}{c} q \\ q \\ . g \\ . g$

#	Article	IF	CITATIONS
55	Core-shell polyacrylate and polystyrene-block-polyacrylate stars. Polymer, 2005, 46, 8555-8564.	3.8	22

Influence of supramolecular interactions on photoresponsive behavior of azobenzene poly(amide) Tj ETQq0 0 0 rg BT_{22} /Overlock 10 Tf 50

57	Noncovalent azopoly(ester imide)s: Experimental study on structure-property relations and theoretical approach for prediction of glass transition temperature and hydrogen bond formation. Polymer, 2017, 113, 53-66.	3.8	22
58	Carbon foam based on epoxy/novolac precursor as porous micro-filler of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 105, 28-39.	7.6	22
59	Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 21-34.	4.3	22
60	Thermosensitive dendritic stars of tert-butyl-glycidylether and glycidol – Synthesis and encapsulation properties. Polymer, 2011, 52, 3526-3536.	3.8	21
61	Bioactive mesoglobules of poly(di(ethylene glycol) monomethyl ether methacrylate)–peptide conjugate. Journal of Polymer Science Part A, 2012, 50, 3104-3115.	2.3	21
62	The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183361.	2.6	21
63	Hydroxyl end-functionalized poly(2-isopropyl oxazoline)s used as nano-sized colloidal templates for preparation of hollow polymeric nanocapsules. Polymer, 2013, 54, 5166-5173.	3.8	20
64	Mesoglobules of random copolyethers as templates for nanoparticles. Journal of Polymer Science Part A, 2010, 48, 4074-4083.	2.3	19
65	Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties. European Polymer Journal, 2011, 47, 981-988.	5.4	19
66	Influence of unique structure of glassy carbon on morphology and properties of its epoxy-based binary composites and hybrid composites with carbon nanotubes. Composites Science and Technology, 2016, 134, 72-80.	7.8	19
67	Amphiphilic core-shell PEO stars by Williamson etherification reaction. Polymer Bulletin, 2002, 49, 9-16.	3.3	18
68	Smart Polymeric Nanocarriers of Met-enkephalin. Biomacromolecules, 2016, 17, 2691-2700.	5.4	18
69	Super-macroporous dextran cryogels via UV-induced crosslinking: synthesis and characterization. Polymer International, 2017, 66, 1306-1311.	3.1	18
70	Morphological diversity of block copolymer/lipid chimeric nanostructures. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	18
71	Encapsulation of Curcumin in Polystyrene-Based Nanoparticles—Drug Loading Capacity and Cytotoxicity. ACS Omega, 2021, 6, 12168-12178.	3.5	18
72	Modified polyglycidol based nanolayers of switchable philicity and their interactions with skin cells. European Polymer Journal, 2013, 49, 106-117.	5.4	17

#	Article	IF	CITATIONS
73	Nanostructures by self-assembly of polyglycidol-derivatized lipids. RSC Advances, 2014, 4, 37208-37219.	3.6	16
74	Hybrid nanoparticles obtained from mixed mesoglobules. Polymer, 2015, 68, 65-73.	3.8	16
75	Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. European Polymer Journal, 2018, 109, 391-401.	5.4	16
76	Thermoresponsive P(HEMA- <i>co</i> -OEGMA) copolymers: synthesis, characteristics and solution behavior. RSC Advances, 2019, 9, 40966-40974.	3.6	16
77	Thermal Behaviour of Common Thermoresponsive Polymers in Phosphate Buffer and in Its Salt Solutions. Polymers, 2021, 13, 90.	4.5	16
78	Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature. ACS Nano, 2016, 10, 6323-6330.	14.6	15
79	PEO-b-PCL grafted niosomes: The cooperativilty of amphiphilic components and their properties in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 177, 338-345.	5.0	15
80	Linear Amphiphilic Polyglycidol/Poly(ε-caprolactone) Block Copolymers Prepared via "Click― Chemistry-Based Concept. Macromolecules, 2019, 52, 3435-3447.	4.8	15
81	The influence of hydrophobic substitution on self-association of poly(ethylene oxide)-b-poly(n-alkyl) Tj ETQq1 1866-1874.	1 0.784314 3.8	rgBT /Overloc 14
82	Nanoâ€Templates from Thermoresponsive Poly(ethoxytriethyleneglycol acrylate) for Polymeric Nanoâ€Capsules. Macromolecular Symposia, 2009, 278, 89-95.	0.7	14
83	Formation of mesoglobules in aqueous media from thermo-sensitive poly(ethoxytriethyleneglycol) Tj ETQq1 1	0.784314 r	gBT_/Overlock
84	Synthesis of silver nanoparticles by <i>Bacillus subtilis</i> Tâ€1Âgrowing on agroâ€industrial wastes and producing biosurfactant. IET Nanobiotechnology, 2016, 10, 62-68.	3.8	14
85	Atomic force microscopy in the production of a biovital skin graft based on human acellular dermal matrix produced inâ€house and <i>in vitro</i> cultured human fibroblasts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 726-733.	3.4	14
86	Degradable polymeric nanoparticles by aggregation of thermoresponsive polymers and "click― chemistry. Nanoscale, 2015, 7, 16823-16833.	5.6	13
87	Thermoresponsive poly[tri(ethylene glycol) monoethyl ether methacrylate]-peptide surfaces obtained by radiation grafting-synthesis and characterisation. Colloids and Surfaces B: Biointerfaces, 2016, 145, 185-193.	5.0	13
88	In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation. Nano Letters, 2017, 17, 4725-4732.	9.1	13
89	Branched polyglycidol and its derivatives grafted-from poly(ethylene terephthalate) and silica as surfaces that reduce protein fouling. European Polymer Journal, 2018, 105, 313-322.	5.4	13
90	Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli-responsive polymeric stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124678.	4.7	13

#	Article	IF	CITATIONS
91	Thermoresponsive poly[oligo(ethylene glycol) methacrylate]s and their bioconjugates – synthesis and solution behavior. Polimery, 2017, 62, 298-310.	0.7	13
92	Formulation and Evaluation of Hybrid Niosomal In Situ Gel for Intravesical Co-Delivery of Curcumin and Gentamicin Sulfate. Pharmaceutics, 2022, 14, 747.	4.5	13
93	Relevance of the Poly(ethylene glycol) Linkers in Peptide Surfaces for Proteases Assays. Langmuir, 2014, 30, 5015-5025.	3.5	12
94	Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as the stabilizing agent. Journal of Dispersion Science and Technology, 2017, 38, 1647-1655.	2.4	12
95	Enhancement of the growth of polymer brushes via ATRP initiated from ions-releasing indium tin oxide substrates. European Polymer Journal, 2019, 112, 817-821.	5.4	12
96	Functional block copolymers bearing pendant cinnamyl groups for enhanced solubilization of caffeic acid phenethyl ester. Polymer Journal, 2020, 52, 435-447.	2.7	12
97	Thermoresponsive polymer surfaces and their application in tissue engineering. Polimery, 2018, 63, 327-338.	0.7	12
98	On stress – strain responses and photoinduced properties of some azo polymers. Polymer, 2018, 140, 117-121.	3.8	11
99	Stable star polymer nanolayers and their thermoresponsiveness as a tool for controlled culture and detachment of fibroblast sheets. Journal of Materials Chemistry B, 2018, 6, 641-655.	5.8	11
100	Development and Evaluation of Stimuli-Responsive Chimeric Nanostructures. AAPS PharmSciTech, 2018, 19, 2971-2989.	3.3	11
101	Synthesis of polyvinyl acetate-graft-poly-2-oxazolines. Polymer International, 1994, 34, 157-161.	3.1	10
102	Synthesis and characterisation of PEG-peptide surfaces for proteolytic enzyme detection. Analytical and Bioanalytical Chemistry, 2013, 405, 9049-9059.	3.7	10
103	Aqueous solution behaviour and solubilisation properties of octadecyl cationic gemini surfactants and their comparison with their amide gemini analogues. Soft Matter, 2018, 14, 754-764.	2.7	10
104	Star macromolecules with hyperbranched poly(arylene oxindole) cores and polyacid arms: Synthesis and solution behavior. Journal of Polymer Science Part A, 2011, 49, 5074-5086.	2.3	9
105	pHâ€Driven Morphological Diversity in Poly[nâ€Butyl Acrylate―block â€(2â€(Dimethylamino)Ethyl Acrylate)] Amphiphilic Copolymer Solutions. Macromolecular Rapid Communications, 2019, 40, 1900477.	3.9	9
106	Poly[oligo(ethylene glycol) methacrylate]-b-poly[(vinyl benzyl trimethylammonium chloride)] Based Multifunctional Hybrid Nanostructures Encapsulating Magnetic Nanoparticles and DNA. Polymers, 2020, 12, 1283.	4.5	9
107	Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions. Polymers, 2020, 12, 200.	4.5	9
108	Micellisation of polystyrene-b-polyglycidol copolymers in water solution. European Polymer Journal, 2018, 99, 72-79.	5.4	8

#	Article	IF	CITATIONS
109	Photocrosslinking of Polyglycidol and Its Derivative: Route to Thermoresponsive Hydrogels. Photochemistry and Photobiology, 2018, 94, 52-60.	2.5	8
110	pH-responsive chimeric liposomes: From nanotechnology to biological assessment. International Journal of Pharmaceutics, 2020, 574, 118849.	5.2	8
111	Multi-layered graphenic structures as the effect of chemical modification of thermally treated anthracite. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 405-416.	2.1	7
112	A thermal analysis and physicochemical study on thermoresponsive chimeric liposomal nanosystems. Journal of Thermal Analysis and Calorimetry, 2020, 141, 751-766.	3.6	7
113	Thermal Transitions in P3HT:PC60BM Films Based on Electrical Resistance Measurements. Polymers, 2020, 12, 1458.	4.5	7
114	HEMA in Polymers with Thermoresponsive Properties. Polymer Reviews, 2021, 61, 714-735.	10.9	7
115	The Elucidation of the Molecular Mechanism of the Extrusion Process. Materials, 2021, 14, 4278.	2.9	7
116	Self-organization and solubilization properties of gemini hydrotropic compounds in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 264-275.	4.7	6
117	Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst. Communications Chemistry, 2019, 2, .	4.5	6
118	Destruction of <i>Pseudomonas aeruginosa</i> pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles. Biofouling, 2020, 36, 679-695.	2.2	6
119	Facile production of ultra-fine silicon nanoparticles. Royal Society Open Science, 2020, 7, 200736.	2.4	6
120	Largeâ€Area Singleâ€Crystal Graphene via Selfâ€Organization at the Macroscale. Advanced Materials, 2020, 32, 2002755.	21.0	6
121	The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers, 2021, 13, 2607.	4.5	6
122	Influence of electron beam irradiation on extracellular matrix of the human allogeneic skin grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, , .	3.4	6
123	Cationic (Co)polymers Based on N-Substituted Polyacrylamides as Carriers of Bio-macromolecules: Polyplexes, Micelleplexes, and Spherical Nucleic Acidlike Structures. Biomacromolecules, 2021, 22, 971-983.	5.4	6
124	Amphiphilic dendritic copolymers of tert-butyl-glycidylether and glycidol as a nanocontainer for an anticancer ruthenium complex. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.3	5
125	A comparative study on simple and practical chemical gas sensors from chemically modified graphene films. Materials Research Express, 2019, 6, 015607.	1.6	5
126	Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. European Polymer Journal, 2022, 166, 111048.	5.4	5

#	Article	IF	CITATIONS
127	Poly[(vinyl benzyl trimethylammonium chloride)]-based nanoparticulate copolymer structures encapsulating insulin. European Polymer Journal, 2022, 169, 111158.	5.4	5
128	Double stimuli responsive mixed aggregates from poly(acrylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (aci	d)-block-po 3.3	oly(ε-caprola 4
129	Design and development of DSPC:DAP:PDMAEMA-b-PLMA nanostructures: from the adumbration of their morphological characteristics to in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127768.	4.7	4
130	Amphiphilic P(OEGMA-co-DIPAEMA) Hyperbranched Copolymer/Magnetic Nanoparticle Hybrid Nanostructures by Co-Assembly. Nanomanufacturing, 2022, 2, 53-68.	3.6	4
131	Thermoresponsive hydrogels of hydrophobically modified polyglycidol. E-Polymers, 2007, 7, .	3.0	3
132	Room temperature single-step synthesis of metal decorated boron-rich nanowires via laser ablation. Nano Convergence, 2019, 6, 14.	12.1	3
133	Effect of sodium dodecyl sulfate on solution behavior of thermoresponsive polymers and their mixtures. Polimery, 2019, 64, 469-479.	0.7	3
134	Polymer-peptide/protein conjugates on the surface. Current Organic Chemistry, 2017, 21, .	1.6	3
135	Starâ€Like Polymers of <i>tert</i> â€Butyl Acrylate via Controlled Radical Polymerization – Synthesis and Properties. Macromolecular Symposia, 2011, 308, 93-100.	0.7	2
136	Amniotic Stem Cells Cultured on Thermoresponsive Polymers Allow Obtaining a Full Cell Sheet. Transplantation Proceedings, 2020, 52, 2198-2203.	0.6	2
137	Unprecedented formation of sterically stabilized phospholipid liposomes of cuboidal morphology. Nanoscale, 2021, 13, 15210-15214.	5.6	2
138	New thermo-sensitive reactive polyethers basing on glycidol. Polimery, 2003, 48, 484-489.	0.7	2
139	Star-shaped polymers with branched poly[p-(halogenmethyl)styrene] cores. Polimery, 2005, 50, 555-561.	0.7	2
140	Synthesis, Hydrophilicity and Micellization of Coil-Brush Polystyrene-b-(polyglycidol-g-polyglycidol) Copolymer—Comparison with Linear Polystyrene-b-polyglycidol. Polymers, 2022, 14, 253.	4.5	2
141	Poly(oligoethylene glycol methacrylate) Starâ€5haped Copolymers with Hydroxypropyl Methacrylate Cores. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	2
142	Glutaraldehyde-crosslinked poly(glycidol-block-ethylene oxide-block-glycidol) networks with temperatureresponsive swelling behaviour. E-Polymers, 2003, 3, .	3.0	1
143	Thermoresponsive Nanogels of Modified Poly((di(ethylene glycol) methyl ether) Tj ETQq1 1 0.784314 rgBT /Over	lock_10 Tf 4.5	⁻ 50 102 Td (r
		0.5	

#	Article	IF	CITATIONS
145	Polymers for peptide/protein arrays. Polimery, 2015, 60, 75-86.	0.7	1
146	Fibroblast and keratinocyte crosstalk: the effect of a poly(tri[ethylene glycol] ethyl ether) Tj ETQq0 0 0 rgBT /Over 2019, 29, 126-140.	lock 10 Tf 0.6	50 707 Td (1
147	Investigation of the Possibilities for Removal of Phenolic Toxic Compounds from Water by Nanoporous Carbon from Polymer By-Products. Applied Sciences (Switzerland), 2022, 12, 2243.	2.5	1
148	Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery. Biomedicines, 2022, 10, 1228.	3.2	1
149	Graphene: Largeâ€Area Singleâ€Crystal Graphene via Selfâ€Organization at the Macroscale (Adv. Mater.) Tj ETQq	1 1 0,784 21.0	314 rgBT /O
150	The Role of Polymer Structure in Formation of Various Nano- and Microstructural Materials: 30 Years of Research in the Laboratory of Nano- and Microstructural Materials at the Centre of Polymer and Carbon Materials PAS. Polymers, 2021, 13, 2892.	4.5	0
151	Properties of poly(acrylic acid)/modified starch compositions applied as a new polymeric binders. Polimery, 2015, 60, 179-185.	0.7	0
152	Mixed lipid/polymer nanostructures: From advanced materials to drug delivery systems. Advanced Materials Letters, 2017, 8, 428-434.	0.6	0
153	Polymers in medicine direction of development. Polimery, 2019, 64, 645-655.	0.7	0