Nikos C Kyrpides

List of Publications by Citations

Source: https://exaly.com/author-pdf/5329977/nikos-c-kyrpides-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

49,673 664 91 211 h-index g-index citations papers 12.6 8.15 716 73,222 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
664	Structure, function and diversity of the healthy human microbiome. <i>Nature</i> , 2012 , 486, 207-14	50.4	6938
663	A framework for human microbiome research. <i>Nature</i> , 2012 , 486, 215-21	50.4	1722
662	Insights into the phylogeny and coding potential of microbial dark matter. <i>Nature</i> , 2013 , 499, 431-7	50.4	1484
661	The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. <i>Nature</i> , 1997 , 390, 364-70	50.4	1257
660	Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. <i>Nature</i> , 2007 , 450, 560-5	50.4	990
659	The minimum information about a genome sequence (MIGS) specification. <i>Nature Biotechnology</i> , 2008 , 26, 541-7	44.5	964
658	IMG: the Integrated Microbial Genomes database and comparative analysis system. <i>Nucleic Acids Research</i> , 2012 , 40, D115-22	20.1	953
657	Protein interaction maps for complete genomes based on gene fusion events. <i>Nature</i> , 1999 , 402, 86-90	50.4	896
656	A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. <i>Nature</i> , 2009 , 462, 1056-60	50.4	803
655	IMG ER: a system for microbial genome annotation expert review and curation. <i>Bioinformatics</i> , 2009 , 25, 2271-8	7.2	742
654	Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. <i>Nature</i> , 2003 , 423, 87-91	50.4	670
653	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. <i>Nature Biotechnology</i> , 2017 , 35, 725-731	44.5	648
652	Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. <i>Journal of Bacteriology</i> , 2003 , 185, 5673-84	3.5	598
651	Uncovering Earth's virome. <i>Nature</i> , 2016 , 536, 425-30	50.4	551
650	Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. <i>Nature Biotechnology</i> , 2006 , 24, 1263-9	44.5	541
649	A catalog of reference genomes from the human microbiome. <i>Science</i> , 2010 , 328, 994-9	33.3	508
648	Minimum Information about a Biosynthetic Gene cluster. <i>Nature Chemical Biology</i> , 2015 , 11, 625-31	11.7	498

(2010-2008)

Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. <i>OMICS A Journal of Integrative Biology</i> , 2008 , 12, 137-41	3.8	491	
CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. <i>BMC Bioinformatics</i> , 2007 , 8, 209	3.6	482	
IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. <i>Nucleic Acids Research</i> , 2019 , 47, D666-D677	20.1	476	
The genomic basis of trophic strategy in marine bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15527-33	11.5	472	
The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. <i>PLoS Biology</i> , 2005 , 3, e121	9.7	452	
Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. <i>Nature Biotechnology</i> , 2011 , 29, 415-20	44.5	445	
IMG 4 version of the integrated microbial genomes comparative analysis system. <i>Nucleic Acids Research</i> , 2014 , 42, D560-7	20.1	444	
GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. <i>Nature Methods</i> , 2010 , 7, 455-7	21.6	441	
The genome sequence of the facultative intracellular pathogen Brucella melitensis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 443-8	11.5	439	
Microbial species delineation using whole genome sequences. <i>Nucleic Acids Research</i> , 2015 , 43, 6761-7	1 20.1	433	
Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. <i>Nature Methods</i> , 2017 , 14, 1063-1071	21.6	412	
Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. <i>Nature Biotechnology</i> , 2004 , 22, 1554-8	44.5	397	
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. <i>Science</i> , 2018 , 362, 839-842	33.3	394	
The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. <i>Nucleic Acids Research</i> , 2012 , 40, D571-9	20.1	375	
Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 11064-9	11.5	354	
Protein structure determination using metagenome sequence data. <i>Science</i> , 2017 , 355, 294-298	33-3	346	
Symbiosis insights through metagenomic analysis of a microbial consortium. <i>Nature</i> , 2006 , 443, 950-5	50.4	339	
The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. <i>Nucleic Acids Research</i> , 2010 , 38, D346-54	20.1	331	
	annotation. OMICS A Journal of Integrative Biology, 2008, 12, 137-41 CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 2007, 8, 209 IMC/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Research, 2019, 47, D666-D677 The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15527-33 The Wolbachia genome of Brugia malayl: endosymbiont evolution within a human pathogenic nematode. PLoS Biology, 2005, 3, e121 Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIXS) specifications. Nature Biotechnology, 2011, 29, 415-20 IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Research, 2014, 42, D560-7 GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nature Methods, 2010, 7, 455-7 The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 443-8 Microbial species delineation using whole genome sequences. Nucleic Acids Research, 2015, 43, 6761-7 Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 Comparison of the Complete genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnology, 2004, 22, 1554-8 Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362, 839-842 The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Research, 2012, 40, D571-9 Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 20	Annotation. OMICS A Journal of Integrative Biology, 2008, 12, 137-41 CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 2007, 8, 209 IMG/M v.S.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Research, 2019, 47, D666-D677 The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15527-33 The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biology, 2005, 3, e121 Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MixS) specifications. Nature Biotechnology, 2011, 29, 415-20 IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Research, 2014, 42, D560-7 GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nature Methods, 2010, 7, 455-7 The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 443-8 Microbial species delineation using whole genome sequences. Nucleic Acids Research, 2015, 43, 6761-71 20.1 Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnology, 2004, 22, 1554-8 Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362, 839-842 33-3 The Genomes On Line Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Research, 2012, 40, D571-9 Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United S	Annotation. OMICS À Journal of Integrative Biology, 2008, 12, 137-41 CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palludoromic repeats. BMC Bioinformadics, 2007, 8, 209 IMG/M v.S.O: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Research, 2019, 47, D666-D677 The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15527-33 The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biology, 2005, 3, e121 Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (8) sequence (MISS) specifications. Nature Biotechnology, 2011, 29, 415-20 Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (8) sequence (MISS) specifications. Nature Biotechnology, 2011, 29, 415-20 Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (8) sequence (MISS) specifications. Nature Biotechnology, 2011, 29, 415-20 Microbial sequence of the integrated microbial genomes comparative analysis system. Nucleic Acids Research, 2014, 42, D560-7 The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 443-8 Microbial species delineation using whole genome sequences. Nucleic Acids Research, 2015, 43, 6761-71 20, 433 Microbial species delineation using whole genome sequences. Nucleic Acids Research, 2015, 43, 6761-71 20, 433 Microbial species delineation using whole genome analysis of the dairy bacterium Streptococcus the Mature Methods, 2017, 14, 1063-1071 Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus the Mature Biotechnology, 2004, 22, 1554-8 Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 201

629	Genomics. Genome project standards in a new era of sequencing. <i>Science</i> , 2009 , 326, 236-7	33.3	326
628	IMG/M: integrated genome and metagenome comparative data analysis system. <i>Nucleic Acids Research</i> , 2017 , 45, D507-D516	20.1	317
627	The integrated microbial genomes (IMG) system. <i>Nucleic Acids Research</i> , 2006 , 34, D344-8	20.1	306
626	Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. <i>PLoS ONE</i> , 2012 , 7, e30087	3.7	305
625	Genome-Based Taxonomic Classification of the Phylum. Frontiers in Microbiology, 2018, 9, 2007	5.7	297
624	The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. <i>Nucleic Acids Research</i> , 2008 , 36, D475-9	20.1	276
623	New insights from uncultivated genomes of the global human gut microbiome. <i>Nature</i> , 2019 , 568, 505-	5 50 .4	275
622	IMG/M: a data management and analysis system for metagenomes. <i>Nucleic Acids Research</i> , 2008 , 36, D534-8	20.1	268
621	Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. Journal of Bacteriology, 2002 , 184, 2005-18	3.5	268
620	Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. <i>Standards in Genomic Sciences</i> , 2014 , 9, 2		267
619	The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. <i>Nucleic Acids Research</i> , 2015 , 43, D1099-106	20.1	258
618	Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. <i>Nature Methods</i> , 2007 , 4, 495-500	21.6	257
617	The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. <i>BMC Bioinformatics</i> , 2012 , 13, 141	3.6	215
616	A korarchaeal genome reveals insights into the evolution of the Archaea. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8102-7	11.5	214
615	IMG/M 4 version of the integrated metagenome comparative analysis system. <i>Nucleic Acids Research</i> , 2014 , 42, D568-73	20.1	212
614	The integrated microbial genomes system: an expanding comparative analysis resource. <i>Nucleic Acids Research</i> , 2010 , 38, D382-90	20.1	210
613	Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. <i>Nature Biotechnology</i> , 2018 , 36, 359-367	44.5	207
612	IMG/M: the integrated metagenome data management and comparative analysis system. <i>Nucleic Acids Research</i> , 2012 , 40, D123-9	20.1	207

(2011-2011)

611	The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. <i>PLoS Genetics</i> , 2011 , 7, e1001314	6	203	
610	The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 425-7	10.3	201	
609	Prepublication data sharing. <i>Nature</i> , 2009 , 461, 168-70	50.4	197	
608	The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. <i>ISME Journal</i> , 2010 , 4, 61-77	11.9	187	
607	Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. <i>Standards in Genomic Sciences</i> , 2010 , 3, 243-8		187	
606	The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. <i>Nucleic Acids Research</i> , 2006 , 34, D332-4	20.1	187	
605	A unified catalog of 204,938 reference genomes from the human gut microbiome. <i>Nature Biotechnology</i> , 2021 , 39, 105-114	44.5	185	
604	Minimum Information about an Uncultivated Virus Genome (MIUViG). <i>Nature Biotechnology</i> , 2019 , 37, 29-37	44.5	180	
603	The DOE-JGI Standard Operating Procedure for the Annotations of Microbial Genomes. <i>Standards in Genomic Sciences</i> , 2009 , 1, 63-7		177	
602	The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). <i>Standards in Genomic Sciences</i> , 2015 , 10, 86		174	
601	The ERGO genome analysis and discovery system. <i>Nucleic Acids Research</i> , 2003 , 31, 164-71	20.1	173	
600	Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. <i>Journal of Bacteriology</i> , 2007 , 189, 2477-86	3.5	167	
599	The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. <i>Nucleic Acids Research</i> , 2008 , 36, D528-33	20.1	167	
598	1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. <i>Nature Biotechnology</i> , 2017 , 35, 676-683	44.5	161	
597	Giant viruses with an expanded complement of translation system components. Science, 2017, 356, 82-	8 5 3.3	148	
596	Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. <i>PLoS Biology</i> , 2014 , 12, e1001920	9.7	146	
595	The Earth Microbiome Project: Meeting report of the "1 EMP meeting on sample selection and acquisition" at Argonne National Laboratory October 6 2010. <i>Standards in Genomic Sciences</i> , 2010 , 3, 249-53		146	
594	The Genomic Standards Consortium. <i>PLoS Biology</i> , 2011 , 9, e1001088	9.7	143	

593	Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. <i>Nature Microbiology</i> , 2016 , 1, 15032	26.6	132
592	Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements. <i>Nucleic Acids Research</i> , 2017 , 45, D446-D456	20.1	128
591	Genomes OnLine database (GOLD) v.7: updates and new features. <i>Nucleic Acids Research</i> , 2019 , 47, D6	49 2-0.6 5	9125
590	A genomic catalog of Earth's microbiomes. <i>Nature Biotechnology</i> , 2021 , 39, 499-509	44.5	120
589	IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses. <i>Nucleic Acids Research</i> , 2017 , 45, D457-D465	20.1	115
588	Genome-Based Taxonomic Classification of. <i>Frontiers in Microbiology</i> , 2016 , 7, 2003	5.7	114
587	The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. <i>Nucleic Acids Research</i> , 2021 , 49, D751-D763	20.1	114
586	Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in woodand dung-feeding higher termites. <i>PLoS ONE</i> , 2013 , 8, e61126	3.7	113
585	KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. <i>Trends in Biochemical Sciences</i> , 1996 , 21, 425-6	10.3	113
584	The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. <i>PLoS ONE</i> , 2012 , 7, e48837	3.7	112
583	CheckV assesses the quality and completeness of metagenome-assembled viral genomes. <i>Nature Biotechnology</i> , 2021 , 39, 578-585	44.5	104
582	Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of. <i>Frontiers in Microbiology</i> , 2020 , 11, 468	5.7	101
581	IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. <i>Nucleic Acids Research</i> , 2019 , 47, D678-D686	20.1	101
580	Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. <i>Nature Microbiology</i> , 2019 , 4, 1895-1906	26.6	99
579	Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. <i>ISME Journal</i> , 2011 , 5, 122-30	11.9	99
578	Giant virus diversity and host interactions through global metagenomics. <i>Nature</i> , 2020 , 578, 432-436	50.4	94
577	Complete genome sequence of Kytococcus sedentarius type strain (541). <i>Standards in Genomic Sciences</i> , 2009 , 1, 12-20		94
576	Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. <i>Green Chemistry</i> , 2011 , 13, 2083	10	93

(2010-2008)

575	A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. <i>Genome Biology</i> , 2008 , 9, R158	18.3	92
574	Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. <i>Cell</i> , 2019 , 178, 1245-1259.e14	56.2	91
573	Individual genome assembly from complex community short-read metagenomic datasets. <i>ISME Journal</i> , 2012 , 6, 898-901	11.9	91
572	Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications, 2016, 7, 10476	17.4	90
571	Murine colitis reveals a disease-associated bacteriophage community. <i>Nature Microbiology</i> , 2018 , 3, 102	3 -4. 6 3	190
57°	A thermostable Cas9 with increased lifetime in human plasma. <i>Nature Communications</i> , 2017 , 8, 1424	17.4	88
569	Succession in the petroleum reservoir microbiome through an oil field production lifecycle. <i>ISME Journal</i> , 2017 , 11, 2141-2154	11.9	86
568	High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16939-44	11.5	85
567	Large-scale contamination of microbial isolate genomes by Illumina PhiX control. <i>Standards in Genomic Sciences</i> , 2015 , 10, 18		85
566	Genomic characterization of methanomicrobiales reveals three classes of methanogens. <i>PLoS ONE</i> , 2009 , 4, e5797	3.7	85
565	The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. <i>PLoS ONE</i> , 2010 , 5, e9729	3.7	84
564	Stop codon reassignments in the wild. <i>Science</i> , 2014 , 344, 909-13	33.3	83
563	Genome-based evolutionary history of Pseudomonas spp. <i>Environmental Microbiology</i> , 2018 , 20, 2142-2	15529	81
562	The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4). Standards in Genomic Sciences, 2016 , 11, 17		81
561	Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 8052-61	4.8	81
560	Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12403-8	11.5	81
559	IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites. <i>MBio</i> , 2015 , 6, e00932	7.8	80
558	Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. <i>Standards in Genomic Sciences</i> , 2010 , 2, 77-86		80

557	Universal protein families and the functional content of the last universal common ancestor. Journal of Molecular Evolution, 1999 , 49, 413-23	3.1	80
556	Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. <i>Nature Biotechnology</i> , 2009 , 27, 627-32	44.5	73
555	Genomics of aerobic cellulose utilization systems in actinobacteria. <i>PLoS ONE</i> , 2012 , 7, e39331	3.7	73
554	Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1278-84		72
553	Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). <i>Standards in Genomic Sciences</i> , 2011 , 5, 97-111		72
552	An experimental metagenome data management and analysis system. <i>Bioinformatics</i> , 2006 , 22, e359-6	577.2	72
551	The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies. <i>Journal of Bacteriology</i> , 2006 , 188, 4015-23	3.5	72
550	Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. <i>Nature Protocols</i> , 2017 , 12, 1673-1682	18.8	71
549	Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. <i>Journal of Bacteriology</i> , 2010 , 192, 6494-6	3.5	71
548	Complete genome sequences of six strains of the genus Methylobacterium. <i>Journal of Bacteriology</i> , 2012 , 194, 4746-8	3.5	70
547	Genome analysis of F. nucleatum sub spp vincentii and its comparison with the genome of F. nucleatum ATCC 25586. <i>Genome Research</i> , 2003 , 13, 1180-9	9.7	67
546	Genomes OnLine Database (GOLD 1.0): a monitor of complete and ongoing genome projects world-wide. <i>Bioinformatics</i> , 1999 , 15, 773-4	7.2	67
545	Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of. <i>Frontiers in Microbiology</i> , 2019 , 10, 2083	5.7	66
544	Genome Data Provides High Support for Generic Boundaries in Sensu Lato. <i>Frontiers in Microbiology</i> , 2017 , 8, 1154	5.7	66
543	Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. <i>FEMS Microbiology Letters</i> , 2005 , 250, 175-84	2.9	64
542	Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. <i>Scientific Reports</i> , 2018 , 8, 525	4.9	63
541	Complete genome sequence of Odoribacter splanchnicus type strain (1651/6). <i>Standards in Genomic Sciences</i> , 2011 , 4, 200-9		62
540	The emergence of major cellular processes in evolution. <i>FEBS Letters</i> , 1996 , 390, 119-23	3.8	62

(2009-2017)

539	IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes. <i>Nucleic Acids Research</i> , 2017 , 45, D560-D565	20.1	61
538	Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. <i>Journal of Bacteriology</i> , 2011 , 193, 5574-5	3.5	61
537	Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. <i>PLoS ONE</i> , 2011 , 6, e20237	3.7	60
536	Complete genome sequence of "Enterobacter lignolyticus" SCF1. <i>Standards in Genomic Sciences</i> , 2011 , 5, 69-85		60
535	Draft sequencing and comparative genomics of Xylella fastidiosa strains reveal novel biological insights. <i>Genome Research</i> , 2002 , 12, 1556-63	9.7	59
534	IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. <i>Nucleic Acids Research</i> , 2021 , 49, D764-D775	20.1	58
533	Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. <i>Journal of Bacteriology</i> , 2011 , 193, 7001-2	3.5	57
532	Complete genome sequence of Chitinophaga pinensis type strain (UQM 2034). <i>Standards in Genomic Sciences</i> , 2010 , 2, 87-95		57
531	Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2015 , 65, 2227-2233	2.2	56
530	Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. <i>Journal of Bacteriology</i> , 2010 , 192, 841-60	3.5	55
529	Focus: Synergistetes. <i>Environmental Microbiology</i> , 2009 , 11, 1327-9	5.2	55
528	Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. <i>PLoS ONE</i> , 2009 , 4, e4192	3.7	54
527	Whole-genome sequence annotation: 'Going wrong with confidence'. <i>Molecular Microbiology</i> , 1999 , 32, 886-7	4.1	54
526	Complete genome sequence of Haliangium ochraceum type strain (SMP-2). <i>Standards in Genomic Sciences</i> , 2010 , 2, 96-106		53
525	On the evolution of arginases and related enzymes. <i>Journal of Molecular Evolution</i> , 1994 , 39, 101-4	3.1	53
524	Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry?. <i>Trends in Genetics</i> , 1999 , 15, 298-9	8.5	52
523	Complete genome sequence of "Thioalkalivibrio sulfidophilus" HL-EbGr7. <i>Standards in Genomic Sciences</i> , 2011 , 4, 23-35		51
522	Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. <i>PLoS ONE</i> , 2009 , 4, e7979	3.7	51

521	Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. <i>Nature Medicine</i> , 2020 , 26, 941-951	50.5	50
520	Improving microbial genome annotations in an integrated database context. <i>PLoS ONE</i> , 2013 , 8, e54859	3.7	49
519	kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. <i>Journal of</i>	3.5	49
518	Bacteriology, 2011 , 193, 1483-4 Complete genome sequence of Geodermatophilus obscurus type strain (G-20). Standards in Genomic Sciences, 2010 , 2, 158-67		49
517	Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. <i>Journal of Bacteriology</i> , 2008 , 190, 2957-65	3.5	49
516	ProDeGe: a computational protocol for fully automated decontamination of genomes. <i>ISME Journal</i> , 2016 , 10, 269-72	11.9	48
515	Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains. <i>Standards in Genomic Sciences</i> , 2015 , 10, 26		48
514	HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks. <i>Nucleic Acids Research</i> , 2018 , 46, e33	20.1	48
513	Complete genome sequence of Thauera aminoaromatica strain MZ1T. <i>Standards in Genomic Sciences</i> , 2012 , 6, 325-35		47
512	Genomes OnLine Database (GOLD) v.8: overview and updates. <i>Nucleic Acids Research</i> , 2021 , 49, D723-D7	733. 1	47
511	A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey. <i>Standards in Genomic Sciences</i> , 2015 , 10, 14		46
510	Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis. <i>Genome Announcements</i> , 2013 , 1, e0008513		46
509	Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications. <i>PLoS Genetics</i> , 2013 , 9, e1003131	6	46
508	Complete genome sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T. <i>Journal of Bacteriology</i> , 2012 , 194, 6300-1	3.5	46
507	Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1(T)), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. <i>Standards in Genomic</i>		46
506	Sciences, 2012, 6, 194-209 Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. <i>Marine Drugs</i> , 2013, 11, 3617-31	6	45
505	Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers. <i>Standards in Genomic Sciences</i> , 2010 , 2, 347-56		45

503	Towards a balanced view of the bacterial tree of life. <i>Microbiome</i> , 2017 , 5, 140	16.6	44
502	Facile Recoding of Selenocysteine in Nature. Angewandte Chemie - International Edition, 2016, 55, 5337-	4 16.4	43
501	Microbial co-habitation and lateral gene transfer: what transposases can tell us. <i>Genome Biology</i> , 2009 , 10, R45	18.3	43
500	Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem. <i>Microbiome</i> , 2020 , 8, 22	16.6	42
499	Prokaryotic community profiles at different operational stages of a Greek solar saltern. <i>Research in Microbiology</i> , 2008 , 159, 609-27	4	42
498	A global metagenomic map of urban microbiomes and antimicrobial resistance. <i>Cell</i> , 2021 , 184, 3376-33	936.e1	742
497	Genome-informed Bradyrhizobium taxonomy: where to from here?. <i>Systematic and Applied Microbiology</i> , 2019 , 42, 427-439	4.2	41
496	The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. <i>PLoS ONE</i> , 2011 , 6, e24222	3.7	41
495	Complete genome sequence of Isosphaera pallida type strain (IS1B). <i>Standards in Genomic Sciences</i> , 2011 , 4, 63-71		40
494	Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305(T)), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order		39
493	Complete genome sequence of Desulfobulbus propionicus type strain (1pr3). <i>Standards in Genomic Sciences</i> , 2011 , 4, 100-10		39
492	Complete genome sequence of Rhizobium leguminosarum by trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum. <i>Standards in Genomic Sciences</i> , 2010 , 2, 66-76		39
491	Novel protein families in archaean genomes. <i>Nucleic Acids Research</i> , 1995 , 23, 565-70	20.1	39
490	The eubacterial transcriptional activator Lrp is present in the archaeon Pyrococcus furiosus. <i>Trends in Biochemical Sciences</i> , 1995 , 20, 140-1	10.3	39
489	Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. <i>BMC Genomics</i> , 2016 , 17, 307	4.5	38
488	Complete genome sequence of Truepera radiovictrix type strain (RQ-24). Standards in Genomic Sciences, 2011 , 4, 91-9		37
487	Complete Genome sequence of Burkholderia phymatum STM815(T), a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. <i>Standards in Genomic Sciences</i> , 2014 , 9, 763-74		36
486	Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea. <i>ISME Journal</i> , 2014 , 8, 1645-58	11.9	36

485	IMG/M-HMP: a metagenome comparative analysis system for the Human Microbiome Project. <i>PLoS ONE</i> , 2012 , 7, e40151	3.7	36
484	Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. <i>Nature Microbiology</i> , 2021 , 6, 960-970	26.6	36
483	Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. <i>ISME Journal</i> , 2017 , 11, 2821-2833	11.9	35
482	Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida. <i>Genome Announcements</i> , 2013 , 1, e0010313		35
481	Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95(T)). <i>Standards in Genomic Sciences</i> , 2011 , 5, 356-70		35
480	Complete genome sequence of Spirosoma linguale type strain (1). <i>Standards in Genomic Sciences</i> , 2010 , 2, 176-85		35
479	Annotation of metagenome short reads using proxygenes. <i>Bioinformatics</i> , 2008 , 24, i7-13	7.2	35
478	How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	34
477	On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. <i>MBio</i> , 2017 , 8,	7.8	34
476	Draft Genome Sequence of Frankia sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of Discaria trinevis. <i>Genome Announcements</i> , 2013 , 1,		34
475	Complete genome sequence of Dehalobacter restrictus PER-K23(T.). <i>Standards in Genomic Sciences</i> , 2013 , 8, 375-88		34
474	Complete genome sequence of Thioalkalivibrio sp. K90mix. Standards in Genomic Sciences, 2011, 5, 341-	-55	34
473	ClaMS: A Classifier for Metagenomic Sequences. Standards in Genomic Sciences, 2011, 5, 248-53		34
472	Genome sequence of the verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. <i>Journal of Bacteriology</i> , 2011 , 193, 2367-8	3.5	34
471	Habitat-Lite: a GSC case study based on free text terms for environmental metadata. <i>OMICS A Journal of Integrative Biology</i> , 2008 , 12, 129-36	3.8	34
470	IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. <i>Nucleic Acids Research</i> , 2020 , 48, D422-D430	20.1	33
469	Genome-Scale Data Call for a Taxonomic Rearrangement of. Frontiers in Microbiology, 2017, 8, 2501	5.7	33
468	A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. <i>BMC Genomics</i> , 2012 , 13, 165	4.5	33

(2010-2013)

467	Draft Genome Sequence of Frankia sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils. <i>Genome Announcements</i> , 2013 , 1,		33
466	Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b. <i>Journal of Bacteriology</i> , 2011 , 193, 2880-1	3.5	33
465	Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575). <i>Standards in Genomic Sciences</i> , 2009 , 1, 242-53		33
464	Microbiome Data Science: Understanding Our Microbial Planet. <i>Trends in Microbiology</i> , 2016 , 24, 425-427	712.4	33
463	Complete genome sequence of Anabaena variabilis ATCC 29413. <i>Standards in Genomic Sciences</i> , 2014 , 9, 562-73		32
462	Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. <i>Scientific Reports</i> , 2017 , 7, 16015	4.9	32
461	Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis. <i>Advances in Bioinformatics</i> , 2017 , 2017, 1278932	5.5	32
460	Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. <i>Journal of Bacteriology</i> , 2012 , 194, 5966-7	3.5	32
459	Complete genome sequence of Actinosynnema mirum type strain (101). <i>Standards in Genomic Sciences</i> , 2009 , 1, 46-53		32
458	Complete genome sequence of Arcobacter nitrofigilis type strain (CI). <i>Standards in Genomic Sciences</i> , 2010 , 2, 300-8		32
457	The Rhodobacter capsulatus genome. <i>Photosynthesis Research</i> , 2001 , 70, 43-52	3.7	32
456	Complete genome sequence of Sulfurimonas autotrophica type strain (OK10). <i>Standards in Genomic Sciences</i> , 2010 , 3, 194-202		32
455	Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. <i>ISME Journal</i> , 2015 , 9, 2094-107	11.9	31
454	Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4251-6	11.5	31
453	Genomic Methods and Microbiological Technologies for Profiling Novel and Extreme Environments for the Extreme Microbiome Project (XMP). <i>Journal of Biomolecular Techniques</i> , 2017 , 28, 31-39	1.1	31
452	Draft genome sequence of Halomonas lutea strain YIM 91125(T) (DSM 23508(T)) isolated from the alkaline Lake Ebinur in Northwest China. <i>Standards in Genomic Sciences</i> , 2015 , 10, 1		31
451	Complete genome sequence of Rhodospirillum rubrum type strain (S1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 293-302		31
450	The genome sequence of Methanohalophilus mahii SLP(T) reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. <i>Archaea</i> , 2010 , 2010, 690737	2	31

449	Complete genome sequence of Cellulomonas flavigena type strain (134). <i>Standards in Genomic Sciences</i> , 2010 , 3, 15-25		31
448	Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 94-103		31
447	Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255). <i>Standards in Genomic Sciences</i> , 2009 , 1, 174-82		31
446	Toward a standards-compliant genomic and metagenomic publication record. <i>OMICS A Journal of Integrative Biology</i> , 2008 , 12, 157-60	3.8	31
445	Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation. <i>PLoS ONE</i> , 2014 , 9, e109738	3.7	31
444	COVID-19 pandemic reveals the peril of ignoring metadata standards. <i>Scientific Data</i> , 2020 , 7, 188	8.2	30
443	Genomic Analysis of , the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum. <i>Frontiers in Microbiology</i> , 2017 , 8, 195	5.7	30
442	Complete genome sequence of Desulfomicrobium baculatum type strain (X). <i>Standards in Genomic Sciences</i> , 2009 , 1, 29-37		30
441	Complete genome sequence of Halomicrobium mukohataei type strain (arg-2). <i>Standards in Genomic Sciences</i> , 2009 , 1, 270-7		30
440	Genome analysis of Desulfotomaculum kuznetsovii strain 17(T) reveals a physiological similarity with Pelotomaculum thermopropionicum strain SI(T). <i>Standards in Genomic Sciences</i> , 2013 , 8, 69-87		29
439	Complete genome sequence of Veillonella parvula type strain (Te3). <i>Standards in Genomic Sciences</i> , 2010 , 2, 57-65		29
438	Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. <i>Standards in Genomic Sciences</i> , 2015 , 10, 106		28
437	Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11(T)). <i>Standards in Genomic Sciences</i> , 2011 , 5, 379-88		28
436	Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. <i>Journal of Bacteriology</i> , 2011 , 193, 5051-2	3.5	28
435	Complete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1. <i>Standards in Genomic Sciences</i> , 2009 , 1, 189-96		28
434	Complete genome sequence of Planctomyces limnophilus type strain (MI290). <i>Standards in Genomic Sciences</i> , 2010 , 3, 47-56		28
433	Complete genome sequence of Meiothermus ruber type strain (21). Standards in Genomic Sciences, 2010 , 3, 26-36		28
432	Complete genome sequence of Haloterrigena turkmenica type strain (4k). <i>Standards in Genomic Sciences</i> , 2010 , 2, 107-16		28

(2009-2010)

431	Complete genome sequence of Nakamurella multipartita type strain (Y-104). <i>Standards in Genomic Sciences</i> , 2010 , 2, 168-75		28	
430	Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. <i>Standards in Genomic Sciences</i> , 2014 , 9, 19		27	
429	Complete genome sequence of Ferroglobus placidus AEDII12DO. <i>Standards in Genomic Sciences</i> , 2011 , 5, 50-60		27	
428	Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 74-83		27	
427	Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park. <i>Standards in Genomic Sciences</i> , 2012 , 6, 381-400		27	
426	Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP). <i>Standards in Genomic Sciences</i> , 2009 , 1, 38-45		27	
425	Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509). <i>Standards in Genomic Sciences</i> , 2010 , 3, 325-36		27	
424	Complete genome sequence of Olsenella uli type strain (VPI D76D-27C). <i>Standards in Genomic Sciences</i> , 2010 , 3, 76-84		27	
423	Complete genome sequence of Desulfarculus baarsii type strain (2st14). <i>Standards in Genomic Sciences</i> , 2010 , 3, 276-84		27	
422	Complete genome sequence of Aminobacterium colombiense type strain (ALA-1). <i>Standards in Genomic Sciences</i> , 2010 , 2, 280-9		27	
421	Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. <i>Standards in Genomic Sciences</i> , 2013 , 7, 469-82		27	
420	Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria. <i>Scientific Reports</i> , 2015 , 5, 16825	4.9	26	
419	Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845T). <i>Standards in Genomic Sciences</i> , 2011 , 4, 144-153		26	
418	Estimating DNA coverage and abundance in metagenomes using a gamma approximation. <i>Bioinformatics</i> , 2010 , 26, 295-301	7.2	26	
417	The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. <i>BMC Genomics</i> , 2009 , 10, 145	4.5	26	
416	Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. <i>Journal of Bacteriology</i> , 2011 , 193, 4023-4	3.5	26	
415	Complete genome sequence of Methanocorpusculum labreanum type strain Z. <i>Standards in Genomic Sciences</i> , 2009 , 1, 197-203		26	
414	Complete genome sequence of Pirellula staleyi type strain (ATCC 27377). Standards in Genomic Sciences, 2009 , 1, 308-16		26	

413	Comparative genome analysis in the integrated microbial genomes (IMG) system. <i>Methods in Molecular Biology</i> , 2007 , 395, 35-56	1.4	26
412	Toward unrestricted use of public genomic data. <i>Science</i> , 2019 , 363, 350-352	33.3	25
411	Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9. <i>Standards in Genomic Sciences</i> , 2012 , 6, 54-62		25
410	Complete genome sequence of Streptosporangium roseum type strain (NI 9100). <i>Standards in Genomic Sciences</i> , 2010 , 2, 29-37		25
409	Evolutionary implications of duplications and Balbiani rings in Drosophila. A study of Drosophila serrata. <i>Genome</i> , 1990 , 33, 478-85	2.4	25
408	A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. <i>Molecular Cell</i> , 2020 , 79, 416-424.e5	17.6	24
407	Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology. <i>Environmental Microbiology</i> , 2016 , 18, 1122-36	5.2	24
406	Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. <i>Standards in Genomic Sciences</i> , 2014 , 9, 632-45		24
405	Draft Genome Sequence of Methyloferula stellata AR4, an Obligate Methanotroph Possessing Only a Soluble Methane Monooxygenase. <i>Genome Announcements</i> , 2015 , 3,		24
404	Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1(T)), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta		24
403	Complete genome sequence of Paludibacter propionicigenes type strain (WB4). <i>Standards in Genomic Sciences</i> , 2011 , 4, 36-44		24
402	Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL). <i>Standards in Genomic Sciences</i> , 2011 , 4, 312-21		24
401	Complete genome sequence of Thermomonospora curvata type strain (B9). <i>Standards in Genomic Sciences</i> , 2011 , 4, 13-22		24
400	Complete genome sequence of Sulfurospirillum deleyianum type strain (5175). <i>Standards in Genomic Sciences</i> , 2010 , 2, 149-57		24
399	Parallel origins of the nucleosome core and eukaryotic transcription from Archaea. <i>Journal of Molecular Evolution</i> , 1996 , 42, 234-9	3.1	24
398	Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. <i>Microbiome</i> , 2018 , 6, 161	16.6	24
397	Permanent draft genome of DSM 505, an obligately chemolithoautotrophic member of the. <i>Standards in Genomic Sciences</i> , 2017 , 12, 10		23
396	NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. <i>BMC Research Notes</i> , 2017 , 10, 278	2.3	23

395	Complete genome sequence of Methanospirillum hungatei type strain JF1. <i>Standards in Genomic Sciences</i> , 2016 , 11, 2		23
394	Complete genome sequence of Cellulophaga lytica type strain (LIM-21). <i>Standards in Genomic Sciences</i> , 2011 , 4, 221-32		23
393	Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3). <i>Standards in Genomic Sciences</i> , 2011 , 4, 123-30		23
392	A call for standardized classification of metagenome projects. <i>Environmental Microbiology</i> , 2010 , 12, 1803-5	5.2	23
391	Genome sequence of the homoacetogenic bacterium Holophaga foetida type strain (TMBS4(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 174-84		23
390	Genomic Standards Consortium Projects. <i>Standards in Genomic Sciences</i> , 2014 , 9, 599-601		23
389	Absence of genome reduction in diverse, facultative endohyphal bacteria. <i>Microbial Genomics</i> , 2017 , 3, e000101	4.4	23
388	Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling. <i>Standards in Genomic Sciences</i> , 2013 , 7, 449-68		22
387	Complete genome sequence of Cellulophaga algicola type strain (IC166). <i>Standards in Genomic Sciences</i> , 2011 , 4, 72-80		22
386	Complete genome sequence of Halogeometricum borinquense type strain (PR3). <i>Standards in Genomic Sciences</i> , 2009 , 1, 150-9		22
385	Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. <i>Standards in Genomic Sciences</i> , 2016 , 11, 67		22
384	Genomic standards consortium projects. Standards in Genomic Sciences, 2014, 9, 599-601		21
383	Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 230-9		21
382	Complete genome sequence of Halorhabdus utahensis type strain (AX-2). <i>Standards in Genomic Sciences</i> , 2009 , 1, 218-25		21
381	Complete genome sequence of Saccharomonospora viridis type strain (P101). <i>Standards in Genomic Sciences</i> , 2009 , 1, 141-9		21
380	Complete genome sequence of Atopobium parvulum type strain (IPP 1246). <i>Standards in Genomic Sciences</i> , 2009 , 1, 166-73		21
379	Diversity, evolution, and classification of virophages uncovered through global metagenomics. <i>Microbiome</i> , 2019 , 7, 157	16.6	21
378	Sulfate-Reducing Bacteria That Produce Exopolymers Thrive in the Calcifying Zone of a Hypersaline Cyanobacterial Mat. <i>Frontiers in Microbiology</i> , 2019 , 10, 862	5.7	20

377	A synthesis of bacterial and archaeal phenotypic trait data. <i>Scientific Data</i> , 2020 , 7, 170	8.2	20
376	Genome analysis of Desulfotomaculum gibsoniae strain Groll(T) a highly versatile Gram-positive sulfate-reducing bacterium. <i>Standards in Genomic Sciences</i> , 2014 , 9, 821-39		20
375	Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. <i>Standards in Genomic Sciences</i> , 2011 , 5, 269-78		20
374	Complete genome sequence of Treponema succinifaciens type strain (6091). <i>Standards in Genomic Sciences</i> , 2011 , 4, 361-70		20
373	Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype strain ATCC 29192. <i>Journal of Bacteriology</i> , 2011 , 193, 5049-50	3.5	20
372	Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 1-13		20
371	Complete genome sequence of Rhodothermus marinus type strain (R-10). <i>Standards in Genomic Sciences</i> , 2009 , 1, 283-90		20
370	Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IA). <i>Standards in Genomic Sciences</i> , 2010 , 2, 9-18		20
369	Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). <i>Standards in Genomic Sciences</i> , 2010 , 2, 49-56		20
368	Complete genome sequence of Archaeoglobus profundus type strain (AV18). <i>Standards in Genomic Sciences</i> , 2010 , 2, 327-46		20
367	Draft genome sequences of sp. nov. ERR11 and CCBAU 10071. <i>Standards in Genomic Sciences</i> , 2017 , 12, 74		19
366	Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. <i>ISME Journal</i> , 2017 , 11, 87-99	11.9	19
365	Draft Genome Sequence of Frankia sp. Strain DC12, an Atypical, Noninfective, Ineffective Isolate from Datisca cannabina. <i>Genome Announcements</i> , 2015 , 3,		19
364	Genome sequence of Phaeobacter inhibens type strain (T5(T)), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens. <i>Standards in Genomic Sciences</i> , 2013 , 9, 334-50		19
363	Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2). <i>Standards in Genomic Sciences</i> , 2011 , 4, 393-401		19
362	Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1. <i>Standards in Genomic Sciences</i> , 2011 , 5, 144-53		19
361	Complete genome sequence of the gliding freshwater bacterium Fluviicola taffensis type strain (RW262). <i>Standards in Genomic Sciences</i> , 2011 , 5, 21-9		19
360	Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium. <i>Standards in Genomic Sciences</i> , 2012 , 6, 84-93		19

(2016-2009)

359	Complete genome sequence of Catenulispora acidiphila type strain (ID 139908). <i>Standards in Genomic Sciences</i> , 2009 , 1, 119-25	19
358	Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3). <i>Standards in Genomic Sciences</i> , 2009 , 1, 54-62	19
357	Complete genome sequence of Brachybacterium faecium type strain (Schefferle 6-10). <i>Standards in Genomic Sciences</i> , 2009 , 1, 3-11	19
356	Complete genome sequence of Dyadobacter fermentans type strain (NS114). Standards in Genomic Sciences, 2009 , 1, 133-40	19
355	Complete genome sequence of Thermanaerovibrio acidaminovorans type strain (Su883). <i>Standards in Genomic Sciences</i> , 2009 , 1, 254-61	19
354	Complete genome sequence of Acidaminococcus fermentans type strain (VR4). <i>Standards in Genomic Sciences</i> , 2010 , 3, 1-14	19
353	Complete genome sequence of Gordonia bronchialis type strain (3410). <i>Standards in Genomic Sciences</i> , 2010 , 2, 19-28	19
352	Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems. <i>Genome Announcements</i> , 2016 , 4,	19
351	Ten years of maintaining and expanding a microbial genome and metagenome analysis system. Trends in Microbiology, 2015 , 23, 730-741	18
350	Complete genome sequence of the thermophilic, piezophilic, heterotrophic bacterium Marinitoga piezophila KA3. <i>Journal of Bacteriology</i> , 2012 , 194, 5974-5	18
349	Complete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 63-73	18
348	Complete genome sequence of the sulfate-reducing firmicute Desulfotomaculum ruminis type strain (DL(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 304-19	18
347	Complete genome sequence of Anaerococcus prevotii type strain (PC1). <i>Standards in Genomic Sciences</i> , 2009 , 1, 159-65	18
346	Complete genome sequence of Brachyspira murdochii type strain (56-150). <i>Standards in Genomic Sciences</i> , 2010 , 2, 260-9	18
345	Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24). <i>Standards in Genomic Sciences</i> , 2010 , 2, 290-9	18
344	Complete genome sequence of Thermobispora bispora type strain (R51). <i>Standards in Genomic Sciences</i> , 2010 , 2, 318-26	18
343	Description of Trichococcus ilyis sp. nov. by combined physiological and in silico genome hybridization analyses. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 3957-3963	18
342	Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. <i>Standards in Genomic Sciences</i> , 2016 , 11, 46	17

341	Desulfotomaculum carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans. <i>Standards in Genomic Sciences</i> , 2014 , 9, 655-75	17
340	Draft genome sequence of type strain HBR26 and description of sp. nov. <i>Standards in Genomic Sciences</i> , 2017 , 12, 14	17
339	Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4. <i>Standards in Genomic Sciences</i> , 2015 , 10, 55	17
338	Complete genome sequence of Haliscomenobacter hydrossis type strain (O). <i>Standards in Genomic Sciences</i> , 2011 , 4, 352-60	17
337	Complete genome sequence of Leptotrichia buccalis type strain (C-1013-b). <i>Standards in Genomic Sciences</i> , 2009 , 1, 126-32	17
336	Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)). <i>Standards in Genomic Sciences</i> , 2010 , 2, 38-48	17
335	Critical Assessment of Metagenome Interpretation 🗈 benchmark of computational metagenomics software	17
334	RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea. <i>MBio</i> , 2017 , 8, 7.8	16
333	Contrasting Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments. MSystems, 2019, 4, 7.6	16
332	Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. <i>Standards in Genomic Sciences</i> , 2014 , 9, 6	16
331	Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels. <i>PLoS ONE</i> , 2015 , 10, e0118285	16
330	Genome sequence of the Leisingera aquimarina type strain (DSM 24565(T)), a member of the marine Roseobacter clade rich in extrachromosomal elements. <i>Standards in Genomic Sciences</i> , 2013 , 8, 389-402	16
329	Complete genome sequence of Mesorhizobium ciceri bv. biserrulae type strain (WSM1271(T)). Standards in Genomic Sciences, 2014 , 9, 462-72	16
328	Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4(T)). Standards in Genomic Sciences, 2012, 6, 145-54	16
327	Complete genome sequence of the plant-associated Serratia plymuthica strain AS13. <i>Standards in Genomic Sciences</i> , 2012 , 7, 22-30	16
326	Complete genome sequence of Streptobacillus moniliformis type strain (9901). <i>Standards in Genomic Sciences</i> , 2009 , 1, 300-7	16
325	Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1). <i>Standards in Genomic Sciences</i> , 2009 , 1, 234-41	16
324	Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21). <i>Standards in Genomic Sciences</i> , 2009 , 1, 234-41	16

323	Complete genome sequence of Meiothermus silvanus type strain (VI-R2). <i>Standards in Genomic Sciences</i> , 2010 , 3, 37-46	16
322	Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288). <i>Standards in Genomic Sciences</i> , 2010 , 3, 57-65	16
321	Complete genome sequence of Sebaldella termitidis type strain (NCTC 11300). <i>Standards in Genomic Sciences</i> , 2010 , 2, 220-7	16
320	Genome of Methanocaldococcus (Methanococcus) jannaschii. <i>Methods in Enzymology</i> , 2001 , 330, 40-123 _{1.7}	16
319	Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845). <i>Standards in Genomic Sciences</i> , 2011 , 4, 144-53	16
318	CheckV: assessing the quality of metagenome-assembled viral genomes	16
317	Global Genetic Cartography of Urban Metagenomes and Anti-Microbial Resistance	16
316	Transfer RNAs with novel cloverleaf structures. <i>Nucleic Acids Research</i> , 2017 , 45, 2776-2785 20.1	16
315	A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System. <i>Molecular Cell</i> , 2019 , 73, 727-737.€₹.6	15
314	Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. <i>Standards in Genomic Sciences</i> , 2016 , 11, 70	15
313	Draft genome sequences of 10 strains of the genus exiguobacterium. <i>Genome Announcements</i> , 2014 , 2,	15
312	Whole Genome Sequencing of Thermus oshimai JL-2 and Thermus thermophilus JL-18, Incomplete Denitrifiers from the United States Great Basin. <i>Genome Announcements</i> , 2013 , 1,	15
311	Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete. <i>Genome Announcements</i> , 2013 , 1,	15
310	Complete genome sequence of Leadbetterella byssophila type strain (4M15). <i>Standards in Genomic Sciences</i> , 2011 , 4, 2-12	15
309	Complete genome sequence of Marivirga tractuosa type strain (H-43). <i>Standards in Genomic Sciences</i> , 2011 , 4, 154-62	15
308	Genome Sequence of the ethene- and vinyl chloride-oxidizing actinomycete Nocardioides sp. strain JS614. <i>Journal of Bacteriology</i> , 2011 , 193, 3399-400	15
307	Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 621-7	15
306	Complete genome sequence of Serratia plymuthica strain AS12. <i>Standards in Genomic Sciences</i> , 2012 , 6, 165-73	15

305	Complete genome sequence of Conexibacter woesei type strain (ID131577). <i>Standards in Genomic Sciences</i> , 2010 , 2, 212-9		15
304	Complete genome sequence of Spirochaeta smaragdinae type strain (SEBR 4228). <i>Standards in Genomic Sciences</i> , 2010 , 3, 136-44		15
303	Errors in genome reviews. Science, 1998 , 281, 1457	33.3	15
302	Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093T). <i>Standards in Genomic Sciences</i> , 2012 , 7, 44-5	58	15
301	Untapped viral diversity in global soil metagenomes		15
300	Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. <i>Microbiome</i> , 2020 , 8, 116	16.6	15
299	Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments. <i>Environmental Microbiology</i> , 2018 , 20, 2686-2708	5.2	14
298	Comparing polysaccharide decomposition between the type strains Gramella echinicola KMM 6050(T) (DSM 19838(T)) and Gramella portivictoriae UST040801-001(T) (DSM 23547(T)), and emended description of Gramella echinicola Nedashkovskaya et al. 2005 emend. Shahina et al. 2014		14
297	Complete genome sequence of Thermocrinis albus type strain (HI 11/12). <i>Standards in Genomic Sciences</i> , 2010 , 2, 194-202		14
296	Complete genome sequence of Methanothermus fervidus type strain (V24S). <i>Standards in Genomic Sciences</i> , 2010 , 3, 315-24		14
295	Tetratrico-peptide-repeat proteins in the archaeon Methanococcus jannaschii. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 245-7	10.3	14
294	Nucleic acid-binding metabolic enzymes: living fossils of stereochemical interactions?. <i>Journal of Molecular Evolution</i> , 1995 , 40, 564-9	3.1	14
293	A unified sequence catalogue of over 280,000 genomes obtained from the human gut microbiome		14
292	Draft Genome Sequence of the Moderately Halophilic Methanotroph Methylohalobius crimeensis Strain 10Ki. <i>Genome Announcements</i> , 2015 , 3,		13
291	Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. <i>Scientific Data</i> , 2019 , 6, 129	8.2	13
290	Complete Genome of Serratia sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens. <i>Genome Announcements</i> , 2013 , 1, e0023912		13
289	Complete genome sequence of the marine methyl-halide oxidizing Leisingera methylohalidivorans type strain (DSM 14336(T)), a representative of the Roseobacter clade. <i>Standards in Genomic Sciences</i> , 2013 , 9, 128-41		13
288	Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production. <i>Standards in Genomic Sciences</i> , 2013 , 9, 359-69		13

287	The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011. <i>Standards in Genomic Sciences</i> , 2011 , 5, 243-2	247	13
286	Complete genome sequence of Cryptobacterium curtum type strain (12-3). <i>Standards in Genomic Sciences</i> , 2009 , 1, 93-100		13
285	Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 66-75		13
284	Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. <i>ISME Journal</i> , 2020 , 14, 2527-2541	11.9	13
283	Atypical Divergence of SARS-CoV-2 Orf8 from Orf7a within the Coronavirus Lineage Suggests Potential Stealthy Viral Strategies in Immune Evasion. <i>MBio</i> , 2021 , 12,	7.8	13
282	Toward a standard in structural genome annotation for prokaryotes. <i>Standards in Genomic Sciences</i> , 2015 , 10, 45		12
281	Genome of Methanoregula boonei 6A8 reveals adaptations to oligotrophic peatland environments. <i>Microbiology (United Kingdom)</i> , 2015 , 161, 1572-1581	2.9	12
280	Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus". <i>Genome Announcements</i> , 2015 , 3,		12
279	Genome sequence of Phaeobacter caeruleus type strain (DSM 24564T), a surface-associated member of the marine Roseobacter clade. <i>Standards in Genomic Sciences</i> , 2013 , 8, 403-419		12
278	Complete genome sequence of Capnocytophaga ochracea type strain (VPI 2845). <i>Standards in Genomic Sciences</i> , 2009 , 1, 101-9		12
277	Complete genome sequence of the facultatively chemolithoautotrophic and methylotrophic alpha Proteobacterium Starkeya novella type strain (ATCC 8093(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 44-58		12
276	Complete genome sequence of Thermosphaera aggregans type strain (M11TL). <i>Standards in Genomic Sciences</i> , 2010 , 2, 245-59		12
275	Mechanisms of specificity in mRNA degradation: autoregulation and cognate interactions. <i>Journal of Theoretical Biology</i> , 1993 , 163, 373-92	2.3	12
274	Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847). <i>Standards in Genomic Sciences</i> , 2010 , 3, 203-11		12
273	Genome sequence of Phaeobacter caeruleus type strain (DSM 24564(T)), a surface-associated member of the marine Roseobacter clade. <i>Standards in Genomic Sciences</i> , 2013 , 8, 403-19		12
272	DOE JGI Metagenome Workflow. <i>MSystems</i> , 2021 , 6,	7.6	12
271	Permanent draft genome of DSM 3134, a moderately thermophilic, obligately chemolithoautotrophic member of the. <i>Standards in Genomic Sciences</i> , 2016 , 11, 74		12
270	The complete genome sequence of Clostridium indolis DSM 755(T.). <i>Standards in Genomic Sciences</i> , 2014 , 9, 1089-104		11

269	High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2(T) (DSM 21788(T)), a valuable source of polysaccharide decomposing enzymes. <i>Standards in Genomic Sciences</i> , 2015 , 10, 46		11
268	Finished Genome of Zymomonas mobilis subsp. mobilis Strain CP4, an Applied Ethanol Producer. <i>Genome Announcements</i> , 2014 , 2,		11
267	Genome sequence of Ensifer sp. TW10; a Tephrosia wallichii (Biyani) microsymbiont native to the Indian Thar Desert. <i>Standards in Genomic Sciences</i> , 2013 , 9, 304-14		11
266	Genome sequence of Rhizobium leguminosarum by trifolii strain WSM1689, the microsymbiont of the one flowered clover Trifolium uniflorum. <i>Standards in Genomic Sciences</i> , 2014 , 9, 527-39		11
265	Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113). <i>Standards in Genomic Sciences</i> , 2011 , 5, 30-40		11
264	Complete genome sequence of Deinococcus maricopensis type strain (LB-34). <i>Standards in Genomic Sciences</i> , 2011 , 4, 163-72		11
263	Complete genome sequence of Desulfurococcus fermentans, a hyperthermophilic cellulolytic crenarchaeon isolated from a freshwater hot spring in Kamchatka, Russia. <i>Journal of Bacteriology</i> , 2012 , 194, 5703-4	3.5	11
262	Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 120-30		11
261	Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122). <i>Standards in Genomic Sciences</i> , 2009 , 1, 21-8		11
260	Meeting Report from the Genomic Standards Consortium (GSC) Workshops 6 and 7. <i>Standards in Genomic Sciences</i> , 2009 , 1, 68-71		11
259	Complete genome sequence of Denitrovibrio acetiphilus type strain (N2460). <i>Standards in Genomic Sciences</i> , 2010 , 2, 270-9		11
258	Laying the foundation for a Genomic Rosetta Stone: creating information hubs through the use of consensus identifiers. <i>OMICS A Journal of Integrative Biology</i> , 2008 , 12, 123-7	3.8	11
257	A Comparison of Microbial Genome Web Portals. Frontiers in Microbiology, 2019, 10, 208	5.7	10
256	Complete Genome Sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment. <i>Genome Announcements</i> , 2015 , 3,		10
255	Draft Genome Sequence of NE2, an Obligate Methanotroph from Subarctic Soil. <i>Genome Announcements</i> , 2017 , 5,		10
254	Genome sequence of the exopolysaccharide-producing Salipiger mucosus type strain (DSM 16094(T)), a moderately halophilic member of the Roseobacter clade. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1331-43		10
253	Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279(T)), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. Standards in Genomic		10
252	Sciences, 2014 , 9, 1076-88 Complete genome sequence of the moderate thermophile Anaerobaculum mobile type strain (NGA(T)). Standards in Genomic Sciences, 2013 , 8, 47-57		10

251	Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.). <i>Standards in Genomic Sciences</i> , 2013 , 9, 294-303		10
250	Genome sequence of Phaeobacter daeponensis type strain (DSM 23529(T)), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis. <i>Standards in Genomic Sciences</i> , 2013 , 9, 142-59		10
249	Complete genome sequence of Nitratifractor salsuginis type strain (E9I37-1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 322-30		10
248	Complete genome sequence of the hyperthermophilic chemolithoautotroph Pyrolobus fumarii type strain (1A). <i>Standards in Genomic Sciences</i> , 2011 , 4, 381-92		10
247	Complete genome sequence of the thermophilic sulfur-reducer Desulfurobacterium thermolithotrophum type strain (BSA(T)) from a deep-sea hydrothermal vent. <i>Standards in Genomic Sciences</i> , 2011 , 5, 407-15		10
246	Genome sequence of the soil bacterium Saccharomonospora azurea type strain (NA-128(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 220-9		10
245	Complete genome sequence of Sanguibacter keddieii type strain (ST-74). <i>Standards in Genomic Sciences</i> , 2009 , 1, 110-8		10
244	Complete genome sequence of Kangiella koreensis type strain (SW-125). <i>Standards in Genomic Sciences</i> , 2009 , 1, 226-33		10
243	Complete genome sequence of Jonesia denitrificans type strain (Prevot 55134). <i>Standards in Genomic Sciences</i> , 2009 , 1, 262-9		10
242	Complete genome sequence of Kribbella flavida type strain (IFO 14399). <i>Standards in Genomic Sciences</i> , 2010 , 2, 186-93		10
241	Complete genome sequence of Thermosediminibacter oceani type strain (JW/IW-1228P). <i>Standards in Genomic Sciences</i> , 2010 , 3, 108-16		10
240	Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 268-75		10
239	Draft Genome Sequence of Frankia Strain G2, a Nitrogen-Fixing Actinobacterium Isolated from Casuarina equisetifolia and Able To Nodulate Actinorhizal Plants of the Order Rhamnales. <i>Genome Announcements</i> , 2016 , 4,		10
238	High quality draft genome sequence of Meganema perideroedes str. Gr1(T) and a proposal for its reclassification to the family Meganemaceae fam. nov. <i>Standards in Genomic Sciences</i> , 2015 , 10, 23		9
237	Arboriscoccus pini gen. nov., sp. nov., an endophyte from a pine tree of the class Alphaproteobacteria, emended description of Geminicoccus roseus, and proposal of Geminicoccaceae fam. nov. <i>Systematic and Applied Microbiology</i> , 2018 , 41, 94-100	4.2	9
236	High quality draft genome sequences of Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T) type strains. <i>Standards in Genomic Sciences</i> , 2016 , 11, 55		9
235	Complete Genome Sequence of Methanosphaerula palustris E1-9CT, a Hydrogenotrophic Methanogen Isolated from a Minerotrophic Fen Peatland. <i>Genome Announcements</i> , 2015 , 3,		9
234	Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566(T.). <i>Standards in Genomic Sciences</i> , 2013 , 8, 450-64		9

233	Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4. <i>Standards in Genomic Sciences</i> , 2013 , 8, 441-9		9
232	Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17. <i>Standards in Genomic Sciences</i> , 2013 , 9, 315-24		9
231	Complete genome sequence of Mesorhizobium australicum type strain (WSM2073(T)). <i>Standards in Genomic Sciences</i> , 2013 , 9, 410-9		9
230	Complete genome sequence of Desulfurococcus mucosus type strain (O7/1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 173-82		9
229	Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyRT). <i>Standards in Genomic Sciences</i> , 2011 , 4, 371-380		9
228	Genome sequence of the filamentous, gliding Thiothrix nivea neotype strain (JP2(T)). <i>Standards in Genomic Sciences</i> , 2011 , 5, 398-406		9
227	Complete genome sequence of Calditerrivibrio nitroreducens type strain (Yu37-1). <i>Standards in Genomic Sciences</i> , 2011 , 4, 54-62		9
226	Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastrointestinal tract. <i>Journal of Bacteriology</i> , 2011 , 193, 2373-	<u>.</u> ⊋.5	9
225	Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 155-64		9
224	Genome sequence of the Antarctic rhodopsins-containing flavobacterium Gillisia limnaea type strain (R-8282(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 107-19		9
223	Complete genome sequence of Ferrimonas balearica type strain (PAT). Standards in Genomic Sciences, 2010 , 3, 174-82		9
222	Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 153-62		9
221	Complete genome sequence of Segniliparus rotundus type strain (CDC 1076). <i>Standards in Genomic Sciences</i> , 2010 , 2, 203-11		9
220	Crowdsourcing and curation: perspectives from biology and natural language processing. <i>Database:</i> the Journal of Biological Databases and Curation, 2016 , 2016,	5	9
219	VPF-Class: Taxonomic assignment and host prediction of uncultivated viruses based on viral protein families. <i>Bioinformatics</i> , 2021 ,	7.2	9
218	Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. <i>Communications Biology</i> , 2020 , 3, 320	6.7	8
217	High quality draft genome sequence of Olivibacter sitiensis type strain (AW-6(T)), a diphenol degrader with genes involved in the catechol pathway. <i>Standards in Genomic Sciences</i> , 2014 , 9, 783-93		8
216	High quality draft genome sequence of the slightly halophilic bacterium Halomonas zhanjiangensis type strain JSM 078169(T) (DSM 21076(T)) from a sea urchin in southern China. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1020-30		8

(2014-2015)

215	Genome Sequence of Porticoccus hydrocarbonoclasticus Strain MCTG13d, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton. <i>Genome Announcements</i> , 2015 , 3,	8
214	Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (H(T)), and emendation of the species Turneriella parva. <i>Standards in Genomic Sciences</i> , 2013 , 8, 228-38	8
213	Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1. <i>Standards in Genomic Sciences</i> , 2013 , 9, 243-53	8
212	Complete genome sequence of Hydrogenobacter thermophilus type strain (TK-6). <i>Standards in Genomic Sciences</i> , 2011 , 4, 131-43	8
211	Complete genome sequence of Weeksella virosa type strain (9751). <i>Standards in Genomic Sciences</i> , 2011 , 4, 81-90	8
210	Complete genome sequence of Hirschia baltica type strain (IFAM 1418(T)). <i>Standards in Genomic Sciences</i> , 2011 , 5, 287-97	8
209	Complete genome sequence of Bacteroides salanitronis type strain (BL78). <i>Standards in Genomic Sciences</i> , 2011 , 4, 191-9	8
208	Complete genome sequence of Tsukamurella paurometabola type strain (no. 33). <i>Standards in Genomic Sciences</i> , 2011 , 4, 342-51	8
207	Genome sequence of the moderately thermophilic halophile Flexistipes sinusarabici strain (MAS10). <i>Standards in Genomic Sciences</i> , 2011 , 5, 86-96	8
206	Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 185-93	8
205	Permanent draft genome sequence of Dethiosulfovibrio peptidovorans type strain (SEBR 4207). <i>Standards in Genomic Sciences</i> , 2010 , 3, 85-92	8
204	Non-contiguous finished genome sequence of Aminomonas paucivorans type strain (GLU-3). <i>Standards in Genomic Sciences</i> , 2010 , 3, 285-93	8
203	Complete genome sequence of Vulcanisaeta distributa type strain (IC-017). <i>Standards in Genomic Sciences</i> , 2010 , 3, 117-25	8
202	Complete genome sequence of Xylanimonas cellulosilytica type strain (XIL07). <i>Standards in Genomic Sciences</i> , 2010 , 2, 1-8	8
201	High-quality genome sequence of the radioresistant bacterium KS 0460. <i>Standards in Genomic Sciences</i> , 2017 , 12, 46	7
200	Draft genome sequence of strain AHT1, a gram-positive sulfidogenic polyextremophile. <i>Standards in Genomic Sciences</i> , 2017 , 12, 57	7
199	Draft genome of TNe-841, a free-living, nitrogen-fixing, tomato plant-associated bacterium. <i>Standards in Genomic Sciences</i> , 2017 , 12, 80	7
198	Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. <i>Standards in Genomic Sciences</i> , 2014 , 9, 3	7

197	High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy. <i>Standards in Genomic Sciences</i> , 2015 , 10, 44		7
196	Complete genome sequence of Bacteroides helcogenes type strain (P 36-108). <i>Standards in Genomic Sciences</i> , 2011 , 4, 45-53		7
195	Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRP(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 240-50		7
194	Complete genome sequence of Halopiger xanaduensis type strain (SH-6(T)). <i>Standards in Genomic Sciences</i> , 2012 , 6, 31-42		7
193	Complete genome sequence of Staphylothermus marinus Stetter and Fiala 1986 type strain F1. <i>Standards in Genomic Sciences</i> , 2009 , 1, 183-8		7
192	Standards in genomic sciences. Standards in Genomic Sciences, 2009, 1, 1-2		7
191	Complete genome sequence of Ilyobacter polytropus type strain (CuHbu1). <i>Standards in Genomic Sciences</i> , 2010 , 3, 304-14		7
190	Complete genome sequence of Arcanobacterium haemolyticum type strain (11018). <i>Standards in Genomic Sciences</i> , 2010 , 3, 126-35		7
189	Complete genome sequence of Thermaerobacter marianensis type strain (7p75a). <i>Standards in Genomic Sciences</i> , 2010 , 3, 337-45		7
188	Meeting Report from the Genomic Standards Consortium (GSC) Workshop 10. <i>Standards in Genomic Sciences</i> , 2010 , 3, 225-31		7
187	A ferredoxin-like domain in RNA polymerase 30/40-kDa subunits. <i>Trends in Biochemical Sciences</i> , 1998 , 23, 169-70	10.3	7
186	The role of IL-4 in human myeloid leukemia: stimulation of RNA synthesis and transduction of differentiation signals through an IL-4 receptor leads to functional and HLA positive HL-60 cells. Leukemia and Lymphoma, 1992, 7, 235-42	1.9	7
185	Recombination should not be an afterthought. Nature Reviews Microbiology, 2020, 18, 606	22.2	7
184	High quality draft genome of type strain a rock actinobacterium, and emended description of. <i>Standards in Genomic Sciences</i> , 2017 , 12, 4		6
183	Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial wastewater. <i>Antonie Van Leeuwenhoek</i> , 2017 , 110, 1189-1197	2.1	6
182	Draft Genome Sequence of Heavy Metal-Resistant Cupriavidus alkaliphilus ASC-732T, Isolated from Agave Rhizosphere in the Northeast of Mexico. <i>Genome Announcements</i> , 2016 , 4,		6
181	High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India. <i>Standards in Genomic Sciences</i> , 2016 , 11, 43		6
180	High quality draft genome sequence of Leucobacter chironomi strain MM2LB(T) (DSM 19883(T)) isolated from a Chironomus sp. egg mass. <i>Standards in Genomic Sciences</i> , 2015 , 10, 21		6

179	Genome Sequence of Halomonas sp. Strain MCTG39a, a Hydrocarbon-Degrading and Exopolymeric Substance-Producing Bacterium. <i>Genome Announcements</i> , 2015 , 3,		6
178	Complete genome sequence of the bile-resistant pigment-producing anaerobe Alistipes finegoldii type strain (AHN2437(T)). <i>Standards in Genomic Sciences</i> , 2013 , 8, 26-36		6
177	Genome sequence of the Litoreibacter arenae type strain (DSM 19593(T)), a member of the Roseobacter clade isolated from sea sand. <i>Standards in Genomic Sciences</i> , 2013 , 9, 117-27		6
176	Genome sequence of the Lebeckia ambigua-nodulating "Burkholderia sprentiae" strain WSM5005(T.). <i>Standards in Genomic Sciences</i> , 2013 , 9, 385-94		6
175	Complete genome sequence of Mahella australiensis type strain (50-1 BON). <i>Standards in Genomic Sciences</i> , 2011 , 4, 331-41		6
174	Complete genome sequence of the thermophilic sulfur-reducer Hippea maritima type strain (MH(2)). <i>Standards in Genomic Sciences</i> , 2011 , 4, 303-11		6
173	A data analysis and coordination center for the human microbiome project 2010 , 11, O13		6
172	The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness. <i>Standards in Genomic Sciences</i> , 2012 , 6, 438-47		6
171	Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1(T)) from a deep-sea hydrothermal vent chimney. <i>Standards in Genomic Sciences</i> , 2012 , 6, 21-30		6
170	Meeting report: GSC M5 roundtable at the 13th International Society for Microbial Ecology meeting in Seattle, WA, USA August 22-27, 2010. <i>Standards in Genomic Sciences</i> , 2010 , 3, 235-9		6
169	ThiD-TenA: a gene pair fusion in eukaryotes. <i>Journal of Molecular Evolution</i> , 1997 , 45, 708-11	3.1	6
168	Reverse interpretation: a hypothetical selection mechanism for adaptive mutagenesis based on autoregulated mRNA stability. <i>Journal of Theoretical Biology</i> , 1994 , 167, 373-9	2.3	6
167	Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species. <i>BMC Genomics</i> , 2020 , 21, 24	4.5	6
166	Genome Sequence of Arenibacter algicola Strain TG409, a Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton. <i>Genome Announcements</i> , 2016 , 4,		6
165	Complete genome sequence of strain YIM 002 (DSM 44835), the type species of the genus and source of new antibiotic compounds. <i>Standards in Genomic Sciences</i> , 2017 , 12, 21		5
164	Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. <i>BMC Genomics</i> , 2020 , 21, 214	4.5	5
163	Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds. <i>Genome Announcements</i> , 2016 , 4,		5
162	Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing Eproteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477(T)). Standards in Genomic Sciences, 2016 , 11, 38		5

161	High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409(T) with an incomplete denitrification pathway. <i>Standards in Genomic Sciences</i> , 2016 , 11, 20		5
160	Genome sequence and emended description of Leisingera nanhaiensis strain DSM 24252(T) isolated from marine sediment. <i>Standards in Genomic Sciences</i> , 2014 , 9, 687-703		5
159	Genome sequence of Microvirga lupini strain LUT6(T), a novel Lupinus alphaproteobacterial microsymbiont from Texas. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1159-67		5
158	Draft genome sequence of the cellulolytic endophyte A37T2. <i>Standards in Genomic Sciences</i> , 2017 , 12, 53		5
157	High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176. <i>Standards in Genomic Sciences</i> , 2015 , 10, 79		5
156	Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh 1(T), an obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake. <i>Standards in Genomic Sciences</i> , 2015 , 10, 105		5
155	Draft Genome Sequence of an Oscillatorian Cyanobacterium, Strain ESFC-1. <i>Genome Announcements</i> , 2013 , 1,		5
154	Complete genome sequence of Coriobacterium glomerans type strain (PW2(T)) from the midgut of Pyrrhocoris apterus L. (red soldier bug). <i>Standards in Genomic Sciences</i> , 2013 , 8, 15-25		5
153	Complete genome sequence of Staphylothermus hellenicus P8. <i>Standards in Genomic Sciences</i> , 2011 , 5, 12-20		5
152	Integration of phenotypic metadata and protein similarity in Archaea using a spectral bipartitioning approach. <i>Nucleic Acids Research</i> , 2009 , 37, 2096-104	20.1	5
151	Complete genome sequence of Marinomonas posidonica type strain (IVIA-Po-181(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 31-43		5
150	The positive role of the ecological community in the genomic revolution. <i>Microbial Ecology</i> , 2007 , 53, 507-11	4.4	5
149	Draft genome of strain 8N4 provides insights into the potential role of this species in its plant host. <i>PeerJ</i> , 2020 , 8, e8822	3.1	5
148	Reclassification of a Polynucleobacter cosmopolitanus strain isolated from tropical Lake Victoria as Polynucleobacter victoriensis sp. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2017 , 67, 5087-5093	2.2	5
147	sp. nov., isolated from air sampling in maritime Antarctica. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020 , 70, 4935-4941	2.2	5
146	Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism. <i>MBio</i> , 2020 , 11,	7.8	5
145	Consent insufficient for data release-Response. <i>Science</i> , 2019 , 364, 446	33.3	4
144	One Complete and Seven Draft Genome Sequences of Subdivision 1 and 3 Isolated from Soil. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	4

143	High-quality draft genome sequence of strain AK4OH1, a gammaproteobacterium isolated from estuarine sediment. <i>Standards in Genomic Sciences</i> , 2016 , 11, 66	4
142	Genome sequence of Shimia str. SK013, a representative of the Roseobacter group isolated from marine sediment. <i>Standards in Genomic Sciences</i> , 2016 , 11, 25	4
141	Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain NZP2037. <i>Standards in Genomic Sciences</i> , 2014 , 9, 7	4
140	Genome sequence of the Thermotoga thermarum type strain (LA3(T)) from an African solfataric spring. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1105-17	4
139	High-quality-draft genome sequence of the fermenting bacterium type strain GluBS11 (DSM 29698). <i>Standards in Genomic Sciences</i> , 2017 , 12, 24	4
138	High-quality permanent draft genome sequence of the type strain USDA 76, isolated from (L.) Merr. <i>Standards in Genomic Sciences</i> , 2017 , 12, 26	4
137	High quality draft genome sequence and analysis of Pontibacter roseus type strain SRC-1(T) (DSM 17521(T)) isolated from muddy waters of a drainage system in Chandigarh, India. <i>Standards in Genomic Sciences</i> , 2015 , 10, 8	4
136	High-quality permanent draft genome sequence of the extremely osmotolerant diphenol degrading bacterium Halotalea alkalilenta AW-7(T), and emended description of the genus Halotalea. <i>Standards in Genomic Sciences</i> , 2015 , 10, 52	4
135	Genome Sequence of Polycyclovorans algicola Strain TG408, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton. <i>Genome Announcements</i> , 2015 , 3,	4
134	Complete Genome Sequence of the Hyperthermophilic Sulfate-Reducing Bacterium Thermodesulfobacterium geofontis OPF15T. <i>Genome Announcements</i> , 2013 , 1, e0016213	4
133	Genome sequence of the Listia angolensis microsymbiont Microvirga lotononidis strain WSM3557(T.). <i>Standards in Genomic Sciences</i> , 2014 , 9, 540-50	4
132	High-quality-draft genome sequence of the yellow-pigmented flavobacterium Joostella marina type strain (En5(T)). <i>Standards in Genomic Sciences</i> , 2013 , 8, 37-46	4
131	Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58. <i>Standards in Genomic Sciences</i> , 2013 , 9, 325-33	4
130	Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio. <i>Standards in Genomic Sciences</i> , 2013 , 9, 57-70	4
129	Genome sequence of Ensifer arboris strain LMG 14919(T); a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan. <i>Standards in Genomic Sciences</i> , 2014 , 9, 473-83	4
128	Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055(T)). Standards in Genomic Sciences, 2013 , 8, 177-87	4
127	Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens. <i>Genome Announcements</i> , 2013 , 1,	4
126	Non-contiguous finished genome sequence of Bacteroides coprosuis type strain (PC139). <i>Standards in Genomic Sciences</i> , 2011 , 4, 233-43	4

125	Complete genome sequence of Tolumonas auensis type strain (TA 4). <i>Standards in Genomic Sciences</i> , 2011 , 5, 112-20		4
124	Data shopping in an open marketplace: Introducing the Ontogrator web application for marking up data using ontologies and browsing using facets. <i>Standards in Genomic Sciences</i> , 2011 , 4, 286-92		4
123	Complete genome sequence of Intrasporangium calvum type strain (7 KIP). <i>Standards in Genomic Sciences</i> , 2010 , 3, 294-303		4
122	Identification of protein-tyrosine phosphatases in Archaea. <i>Journal of Molecular Evolution</i> , 1999 , 48, 625	5 <i>3</i> [1	4
121			4
120	Impact of Soil Salinity on the Cowpea Nodule-Microbiome and the Isolation of Halotolerant PGPR Strains to Promote Plant Growth under Salinity Stress. <i>Phytobiomes Journal</i> , 2020 , 4, 364-374	4.8	4
119	Permanent Improved High-Quality Draft Genome Sequence of Nocardia casuarinae Strain BMG51109, an Endophyte of Actinorhizal Root Nodules of Casuarina glauca. <i>Genome Announcements</i> , 2016 , 4,		4
118	Improved Draft Genome Sequence of sp. Strain LKL04, a Bacterial Endophyte Associated with Switchgrass Plants. <i>Microbiology Resource Announcements</i> , 2019 , 8,	1.3	4
117	Draft Genome of Burkholderia cenocepacia TAtl-371, a Strain from the Burkholderia cepacia Complex Retains Antagonism in Different Carbon and Nitrogen Sources. <i>Current Microbiology</i> , 2019 , 76, 566-574	2.4	3
116	High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama. <i>Standards in Genomic Sciences</i> , 2015 , 10, 27		3
115	Draft genome sequence of strain USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. <i>Standards in Genomic Sciences</i> , 2017 , 12, 78		3
114	Permanent Draft Genome Sequence of Nocardia sp. BMG111209, an Actinobacterium Isolated from Nodules of Casuarina glauca. <i>Genome Announcements</i> , 2016 , 4,		3
113	High-Quality Draft Genome Sequences of Eight Bacteria Isolated from Fungus Gardens Grown by Trachymyrmex septentrionalis Ants. <i>Microbiology Resource Announcements</i> , 2018 , 7,	1.3	3
112	Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot. <i>Scientific Data</i> , 2019 , 6, 140	8.2	3
111	Metagenomes and metatranscriptomes from boreal potential and actual acid sulfate soil materials. <i>Scientific Data</i> , 2019 , 6, 207	8.2	3
110	Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598. <i>Standards in Genomic Sciences</i> , 2014 , 9, 5		3
109	Genome sequence of the Medicago-nodulating Ensifer meliloti commercial inoculant strain RRI128. <i>Standards in Genomic Sciences</i> , 2014 , 9, 602-13		3
108	Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1. <i>Genome Announcements</i> , 2015 , 3,		3

107	High-Quality Draft Genome Sequence of Kallotenue papyrolyticum JKG1T Reveals Broad Heterotrophic Capacity Focused on Carbohydrate and Amino Acid Metabolism. <i>Genome Announcements</i> , 2015 , 3,		3
106	High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland. <i>Standards in Genomic Sciences</i> , 2015 , 10, 36		3
105	Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2(T). <i>Standards in Genomic Sciences</i> , 2015 , 10, 85		3
104	High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective saltand drought-tolerant microsymbiont of Phaseolus vulgaris. <i>Standards in Genomic Sciences</i> , 2015 , 10, 34		3
103	Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos. <i>Standards in Genomic Sciences</i> , 2015 , 10, 113		3
102	Complete Genome Sequence of Methanoregula formicica SMSPT, a Mesophilic Hydrogenotrophic Methanogen Isolated from a Methanogenic Upflow Anaerobic Sludge Blanket Reactor. <i>Genome Announcements</i> , 2014 , 2,		3
101	Draft Genome Sequence of Pseudomonas azotifigens Strain DSM 17556T (6H33bT), a Nitrogen Fixer Strain Isolated from a Compost Pile. <i>Genome Announcements</i> , 2013 , 1,		3
100	Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI943. <i>Standards in Genomic Sciences</i> , 2013 , 9, 232-42		3
99	Genome sequence of the Trifolium rueppellianum -nodulating Rhizobium leguminosarum bv. trifolii strain WSM2012. <i>Standards in Genomic Sciences</i> , 2013 , 9, 283-93		3
98	Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI565. <i>Standards in Genomic Sciences</i> , 2013 , 9, 220-31		3
97	Genome sequence of the South American clover-nodulating Rhizobium leguminosarum bv. trifolii strain WSM597. <i>Standards in Genomic Sciences</i> , 2013 , 9, 264-72		3
96	Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2230 from Karijini National Park, Australia. <i>Standards in Genomic Sciences</i> , 2014 , 9, 551-61		3
95	Complete genome sequence of Oceanithermus profundus type strain (506). <i>Standards in Genomic Sciences</i> , 2011 , 4, 210-20		3
94	Genome sequence of the ocean sediment bacterium Saccharomonospora marina type strain (XMU15(T)). Standards in Genomic Sciences, 2012, 6, 265-75		3
93	Meeting Report: Towards a Critical Assessment of Functional Annotation Experiment (CAFAE) for bacterial genome annotation. <i>Standards in Genomic Sciences</i> , 2010 , 3, 240-2		3
92	A transient GCN4 mRNA destabilization follows GCN4 translational derepression. <i>Journal of Biological Chemistry</i> , 1995 , 270, 17317-20	5.4	3
91	The core histone fold: limits to functional versatility. <i>Journal of Molecular Evolution</i> , 1996 , 43, 541-2	3.1	3
90	Investigation of intracellular signals generated by gamma-interferon and IL-4 leading to the induction of class II antigen expression. <i>Mediators of Inflammation</i> , 1993 , 2, 343-8	4.3	3

89	Complete genome sequence of Syntrophobotulus glycolicus type strain (FlGlyR). <i>Standards in Genomic Sciences</i> , 2011 , 4, 371-80		3
88	Draft genome and description of Consotaella salsifontis gen. nov. sp. nov., a halophilic, free-living, nitrogen-fixing alphaproteobacterium isolated from an ancient terrestrial saline spring. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3744-3751	2.2	3
87	Genome analysis of the marine bacterium Kiloniella laminariae and first insights into comparative genomics with related Kiloniella species. <i>Archives of Microbiology</i> , 2020 , 202, 815-824	3	3
86	Metagenome Sequencing to Explore Phylogenomics of Terrestrial Cyanobacteria. <i>Microbiology Resource Announcements</i> , 2021 , 10, e0025821	1.3	3
85	High-Quality Draft Genomes from Thermus caliditerrae YIM 77777 and T.Itengchongensis YIM 77401, Isolates from Tengchong, China. <i>Genome Announcements</i> , 2016 , 4,		3
84	Complete Genome Sequence for sp. Strain OR53 and Draft Genome Sequence for sp. Strain OR43, Two Bacteria Tolerant to Uranium. <i>Microbiology Resource Announcements</i> , 2019 , 8,	1.3	3
83	Genome Sequences of Actinobacteria from Extreme Environments in Colombia. <i>Microbiology Resource Announcements</i> , 2018 , 7,	1.3	3
82	Genome Sequence of sp. Strain GAS474, a Novel Bacterium Isolated from Soil. <i>Genome Announcements</i> , 2018 , 6,		3
81	The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. <i>Nature Communications</i> , 2021 , 12, 5483	17.4	3
80	High quality permanent draft genome sequence of DSM 19482, isolated from raw cow milk. <i>Standards in Genomic Sciences</i> , 2017 , 12, 31		2
79	Permanent Draft Genome Sequence of Strain Z-533, a Peptide and Starch Degrader Isolated from Thermal Springs in the Kamchatka Peninsula and Kunashir Island, Russia. <i>Genome Announcements</i> , 2017 , 5,		2
78	Complete Genome Sequence of ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters. <i>Genome Announcements</i> , 2017 , 5,		2
77	Improved Draft Genome Sequence of Pseudomonas poae A2-S9, a Strain with Plant Growth-Promoting Activity. <i>Microbiology Resource Announcements</i> , 2019 , 8,	1.3	2
76	Genome Sequence of sp. Strain MCTG156(1a), Isolated from a Scottish Coastal Phytoplankton Net Sample. <i>Genome Announcements</i> , 2017 , 5,		2
75	An improved high-quality draft genome sequence of Carnobacterium inhibens subsp. inhibens strain K1(T). <i>Standards in Genomic Sciences</i> , 2016 , 11, 65		2
74	Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland. Standards in Genomic Sciences, 2016 , 11, 3		2
73	Genome sequence of the Wenxinia marina type strain (DSM 24838(T)), a representative of the Roseobacter group isolated from oilfield sediments. <i>Standards in Genomic Sciences</i> , 2014 , 9, 855-65		2
72	Complete Genome Sequence of Methanolinea tarda NOBI-1T, a Hydrogenotrophic Methanogen Isolated from Methanogenic Digester Sludge. <i>Genome Announcements</i> , 2014 , 2,		2

71	High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413. <i>Standards in Genomic Sciences</i> , 2015 , 10, 31		2
70	High quality draft genome sequence of Bacteroides barnesiae type strain BL2(T) (DSM 18169(T)) from chicken caecum. <i>Standards in Genomic Sciences</i> , 2015 , 10, 48		2
69	Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1(T), a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification. <i>Standards in Genomic Sciences</i> , 2015 , 10, 84		2
68	High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Cupriavidus sp. strain UYPR2.512. <i>Standards in Genomic Sciences</i> , 2015 , 10, 13		2
67	Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a. <i>Genome Announcements</i> , 2015 , 3,		2
66	Genome sequence of Burkholderia mimosarum strain LMG 23256(T), a Mimosa pigra microsymbiont from Anso, Taiwan. <i>Standards in Genomic Sciences</i> , 2014 , 9, 484-94		2
65	Genome sequence of the lupin-nodulating Bradyrhizobium sp. strain WSM1417. <i>Standards in Genomic Sciences</i> , 2013 , 9, 273-82		2
64	Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia. <i>Standards in Genomic Sciences</i> , 2014 , 9, 1168-80		2
63	Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692(T)) from the alkaline Lake Magadi in the East African Rift. <i>Standards in Genomic Sciences</i> , 2013 , 8, 165-76		2
62	Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20). <i>Standards in Genomic Sciences</i> , 2011 , 5, 41-9		2
61	Meeting Report from the Genomic Standards Consortium (GSC) Workshop 9. <i>Standards in Genomic Sciences</i> , 2010 , 3, 216-24		2
60	Meeting Report: "Metagenomics, Metadata and Meta-analysis" (M3) Workshop at the Pacific Symposium on Biocomputing 2010. <i>Standards in Genomic Sciences</i> , 2010 , 2, 357-60		2
59	Methanococcus jannaschiiGenome: Revisited. <i>Genome Science & Technology</i> , 1996 , 1, 329-338		2
58	Different molecular mechanisms lead to same endpoints with different function: TNF-alpha induces non-functional CSF-1 receptors on HL-60 cells in contrast to interferon-gamma. <i>Journal of Receptors and Signal Transduction</i> , 1992 , 12, 59-70		2
57	High-quality draft genome sequences of DSM 14164, DSM 17497, DSM 15088, DSM 21245 and DSM 16006: taxonomic considerations. <i>Access Microbiology</i> , 2019 , 1, e000067	1	2
56	Cryptic inoviruses are pervasive in bacteria and archaea across Earth biomes		2
55	A thermostable Cas9 with increased lifetime in human plasma		2
54	Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of and Three Candidate Species From China and Japan. <i>Frontiers in Microbiology</i> , 2021 , 12, 632731	5.7	2

53	Application of Long Sequence Reads To Improve Genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7. <i>Genome Announcements</i> , 2016 , 4,		2
52	Establishment of computational biology in Greece and Cyprus: Past, present, and future. <i>PLoS Computational Biology</i> , 2019 , 15, e1007532	5	2
51	Draft Genome Sequences of Three Strains of a Novel Species Isolated from Forest Soil. <i>Genome Announcements</i> , 2018 , 6,		2
50	Evolution of a multi-step phosphorelay signal transduction system in Ensifer: recruitment of the sigma factor RpoN and a novel enhancer-binding protein triggers acid-activated gene expression. <i>Molecular Microbiology</i> , 2017 , 103, 829-844	4.1	1
49	Complete Genome Sequence of Serratia quinivorans Strain 124R, a Facultative Anaerobe Isolated on Organosolv Lignin as a Sole Carbon Source. <i>Microbiology Resource Announcements</i> , 2019 , 8,	1.3	1
48	Microbial Benthic Communities in the Aegean Sea. <i>Handbook of Environmental Chemistry</i> , 2020 , 1	0.8	1
47	Draft genome sequence of CL-YJ9 (DSM 18822), isolated from the rhizosphere of the coastal tidal-flat plant. <i>Standards in Genomic Sciences</i> , 2017 , 12, 65		1
46	Draft Genome Sequence of C7, Isolated from Seawater from the Menai Straits, Wales, United Kingdom. <i>Genome Announcements</i> , 2018 , 6,		1
45	Complete Genome Sequence of sp. Strain RBIITD, a Butyrate- and Butanol-Producing Thermophile. <i>Genome Announcements</i> , 2018 , 6,		1
44	High-quality draft genome sequence of Flavobacterium suncheonense GH29-5(T) (DSM 17707(T)) isolated from greenhouse soil in South Korea, and emended description of Flavobacterium suncheonense GH29-5(T). Standards in Genomic Sciences, 2016, 11, 42		1
43	High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775(T), a plant pathogen of French bean pods. <i>Standards in Genomic Sciences</i> , 2016 , 11, 4		1
42	High-quality draft genome sequence of strain STM6155, a microsymbiont from New Caledonia. <i>Standards in Genomic Sciences</i> , 2017 , 12, 7		1
41	High-quality permanent draft genome sequence of the Lebeckia - nodulating Burkholderia dilworthii strain WSM3556(T). <i>Standards in Genomic Sciences</i> , 2015 , 10, 64		1
40	High-quality draft genome sequence of Gracilimonas tropica CL-CB462(T) (DSM 19535(T)), isolated from a Synechococcus culture. <i>Standards in Genomic Sciences</i> , 2015 , 10, 98		1
39	High-quality permanent draft genome sequence of Bradyrhizobium sp. strain WSM1743 - an effective microsymbiont of an Indigofera sp. growing in Australia. <i>Standards in Genomic Sciences</i> , 2015 , 10, 87		1
38	High-quality permanent draft genome sequence of Bradyrhizobium sp. Ai1a-2; a microsymbiont of Andira inermis discovered in Costa Rica. <i>Standards in Genomic Sciences</i> , 2015 , 10, 33		1
37	Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group. <i>Standards in Genomic Sciences</i> , 2015 , 10, 51		1
36	High-quality permanent draft genome sequence of the Mimosa asperata - nodulating Cupriavidus sp. strain AMP6. <i>Standards in Genomic Sciences</i> , 2015 , 10, 80		1

35	High quality draft genome sequence of Corynebacterium ulceribovis type strain IMMIB-L1395(T) (DSM 45146(T)). <i>Standards in Genomic Sciences</i> , 2015 , 10, 50		1
34	High-quality permanent draft genome sequence of Bradyrhizobium sp. Th.b2, a microsymbiont of Amphicarpaea bracteata collected in Johnson City, New York. <i>Standards in Genomic Sciences</i> , 2015 , 10, 24		1
33	High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. <i>Genome Announcements</i> , 2015 , 3,		1
32	Genome sequence of Ensifer medicae strain WSM1369; an effective microsymbiont of the annual legume Medicago sphaerocarpos. <i>Standards in Genomic Sciences</i> , 2013 , 9, 420-30		1
31	Genome sequence of Ensifer medicae strain WSM1115; an acid-tolerant Medicago-nodulating microsymbiont from Samothraki, Greece. <i>Standards in Genomic Sciences</i> , 2014 , 9, 514-26		1
30	Genome sequence of the chemoheterotrophic soil bacterium Saccharomonospora cyanea type strain (NA-134(T)). <i>Standards in Genomic Sciences</i> , 2013 , 9, 28-41		1
29	Genome sequence of Frateuria aurantia type strain (Kondl67(T)), a xanthomonade isolated from Lilium auratium Lindl. <i>Standards in Genomic Sciences</i> , 2013 , 9, 83-92		1
28	Meeting report of the RNA Ontology Consortium January 8-9, 2011. <i>Standards in Genomic Sciences</i> , 2011 , 4, 252-6		1
27	Permanent draft genome sequence of the gliding predator Saprospira grandis strain Sa g1 (= HR1). <i>Standards in Genomic Sciences</i> , 2012 , 6, 210-9		1
26	Conceptualizing a Genomics Software Institute (GSI). Standards in Genomic Sciences, 2012 , 6, 136-44		1
25	SOP for pathway inference in Integrated Microbial Genomes (IMG). <i>Standards in Genomic Sciences</i> , 2011 , 5, 420-3		1
24	Meeting Report from the Genomic Standards Consortium (GSC) Workshop 8. <i>Standards in Genomic Sciences</i> , 2010 , 3, 93-6		1
23	Metagenomes and Metatranscriptomes of a Glucose-Amended Agricultural Soil. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	1
22	Medicago root nodule microbiomes: insights into a complex ecosystem with potential candidates for plant growth promotion. <i>Plant and Soil</i> ,1	4.2	1
21	The DOE JGI Metagenome Workflow		1
20	Draft Genome Sequences of New Isolates and the Known Species of the Family Microbacteriaceae Associated with Plants. <i>Microbiology Resource Announcements</i> , 2018 , 7,	1.3	1
19	Illuminating the Virosphere Through Global Metagenomics. <i>Annual Review of Biomedical Data Science</i> , 2021 , 4, 369-391	5.6	1
18	The Roseibium album (Labrenzia alba) Genome Possesses Multiple Symbiosis Factors Possibly Underpinning Host-Microbe Relationships in the Marine Benthos. <i>Microbiology Resource Announcements</i> , 2021 , 10, e0032021	1.3	1

17	Draft genome sequence of Actinotignum schaalii DSM 15541T: Genetic insights into the lifestyle, cell fitness and virulence. <i>PLoS ONE</i> , 2017 , 12, e0188914	3.7	О
16	High quality draft genome sequence of Brachymonas chironomi AIMA4(T) (DSM 19884(T)) isolated from a Chironomus sp. egg mass. <i>Standards in Genomic Sciences</i> , 2015 , 10, 29		О
15	High-quality permanent draft genome sequence of Ensifer medicae strain WSM244, a microsymbiont isolated from Medicago polymorpha growing in alkaline soil. <i>Standards in Genomic Sciences</i> , 2015 , 10, 126		0
14	Genome sequence of the flexirubin-pigmented soil bacterium Niabella soli type strain (JS13-8(T)). <i>Standards in Genomic Sciences</i> , 2012 , 7, 210-20		O
13	The Santorini Volcanic Complex as a Valuable Source of Enzymes for Bioenergy. <i>Energies</i> , 2021 , 14, 141	43.1	О
12	Frigoriflavimonas asaccharolytica gen. nov., sp. nov., a novel psychrophilic esterase and protease producing bacterium isolated from Antarctica. <i>Antonie Van Leeuwenhoek</i> , 2021 , 114, 1991-2002	2.1	O
11	The Genome of the Acid Soil-Adapted Strain OR191 Encodes Determinants for Effective Symbiotic Interaction With Both an Inverted Repeat Lacking Clade and a Phaseoloid Legume Host <i>Frontiers in Microbiology</i> , 2022 , 13, 735911	5.7	0
10	High-quality draft genome sequence of Mlalz-1, a microsymbiont of (L.) miller collected in Lanzarote, Canary Islands, Spain. <i>Standards in Genomic Sciences</i> , 2017 , 12, 58		
9	Draft genome sequence of DSM 21565 an anaerobic, slightly halophilic bacterium isolated from a Colombian saline spring. <i>Standards in Genomic Sciences</i> , 2017 , 12, 86		
8	Genome sequence of Ensifer medicae Di28; an effective N2-fixing microsymbiont of Medicago murex and M. polymorpha. <i>Standards in Genomic Sciences</i> , 2014 , 9, 4		
7	The Genome Sequence of the Novel Rhizobial Species Microvirga lotononidis Strain WSM3557T 2015 , 235-244		
6	Genome sequence of the Ornithopus/Lupinus-nodulating Bradyrhizobium sp. strain WSM471. <i>Standards in Genomic Sciences</i> , 2013 , 9, 254-63		
5	Alive and well at 100. Standards in Genomic Sciences, 2011, 4, 1		
4	Complete genome sequence of Mesorhizobium australicum type strain (WSM2073T). <i>Standards in Genomic Sciences</i> , 2013 , 9, 1-15		
3	Draft genome sequence of Chryseobacterium limigenitum SUR2 (LMG 28734) isolated from dehydrated sludge. <i>Brazilian Journal of Microbiology</i> , 2018 , 49, 5-6	2.2	
2	Identifying candidate structured RNAs in CRISPR operons RNA Biology, 2022, 19, 678-685	4.8	
1	Sodalis ligni Strain 159R Isolated from an Anaerobic Lignin-Degrading Consortium <i>Microbiology Spectrum</i> , 2022 , e0234621	8.9	