
Iraklis Lazakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5329918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity analysis of offshore wind farm operation and maintenance cost and availability. Renewable Energy, 2016, 85, 1226-1236.	8.9	133
2	Machine learning models for predicting ship main engine Fuel Oil Consumption: A comparative study. Ocean Engineering, 2019, 188, 106282.	4.3	125
3	Advanced logistics planning for offshore wind farm operation and maintenance activities. Ocean Engineering, 2015, 101, 211-226.	4.3	110
4	Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy, 2017, 20, 361-378.	4.2	94
5	Marine dual fuel engine modelling and parametric investigation of engine settings effect on performance-emissions trade-offs. Ocean Engineering, 2018, 157, 376-386.	4.3	65
6	Development of a Combined Operational and Strategic Decision Support Model for Offshore Wind. Energy Procedia, 2013, 35, 157-166.	1.8	57
7	A novel, data-driven heuristic framework for vessel weather routing. Ocean Engineering, 2020, 197, 106887.	4.3	56
8	Increasing ship operational reliability through the implementation of a holistic maintenance management strategy. Ships and Offshore Structures, 2010, 5, 337-357.	1.9	53
9	Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications. Ships and Offshore Structures, 2018, 13, 649-656.	1.9	52
10	Machine learning and data-driven fault detection for ship systems operations. Ocean Engineering, 2020, 216, 107968.	4.3	52
11	Advanced Ship Systems Condition Monitoring for Enhanced Inspection, Maintenance and Decision Making in Ship Operations. Transportation Research Procedia, 2016, 14, 1679-1688.	1.5	46
12	Investigating an SVM-driven, one-class approach to estimating ship systems condition. Ships and Offshore Structures, 2019, 14, 432-441.	1.9	43
13	Real-time data-driven missing data imputation for short-term sensor data of marine systems. A comparative study. Ocean Engineering, 2020, 218, 108261.	4.3	40
14	Investigation of Optimum Crew Transfer Vessel Fleet for Offshore Wind Farm Maintenance Operations. Wind Engineering, 2015, 39, 31-52.	1.9	34
15	A novel data condition and performance hybrid imputation method for energy efficient operations of marine systems. Ocean Engineering, 2019, 188, 106220.	4.3	34
16	Application of NARX neural network for predicting marine engine performance parameters. Ships and Offshore Structures, 2020, 15, 443-452.	1.9	33
17	Investigation of optimum jack-up vessel chartering strategy for offshore wind farm O&M activities. Ocean Engineering, 2015, 95, 106-115.	4.3	32
18	Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings. Energy, 2018, 143, 533-545.	8.8	30

IRAKLIS LAZAKIS

#	Article	IF	CITATIONS
19	Selection of the best maintenance approach in the maritime industry under fuzzy multiple attributive group decision-making environment. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2016, 230, 297-309.	0.5	27
20	An optimization framework for daily route planning and scheduling of maintenance vessel activities in offshore wind farms. Ocean Engineering, 2021, 225, 108752.	4.3	24
21	RADIS: A real-time anomaly detection intelligent system for fault diagnosis of marine machinery. Expert Systems With Applications, 2022, 204, 117634.	7.6	24
22	Cost Benefit Analysis of Mothership Concept and Investigation of Optimum Chartering Strategy for Offshore Wind Farms. Energy Procedia, 2015, 80, 63-71.	1.8	10
23	Environmental interactions of tidal lagoons: A comparison of industry perspectives. Renewable Energy, 2018, 119, 309-319.	8.9	9
24	A novel framework for imputing large gaps of missing values from time series sensor data of marine machinery systems. Ships and Offshore Structures, 2022, 17, 1802-1811.	1.9	9
25	A real-time data-driven framework for the identification of steady states of marine machinery. Applied Ocean Research, 2022, 121, 103052.	4.1	8
26	Bayesian and machine learning-based fault detection and diagnostics for marine applications. Ships and Offshore Structures, 2022, 17, 2686-2698.	1.9	7
27	Analysing the effectiveness of different offshore maintenance base options for floating wind farms. Wind Energy Science, 2022, 7, 887-901.	3.3	5
28	Assessing offshore wind turbine reliability and availability. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2019, 233, 267-282.	0.5	4
29	A systematic review of transferable solution options for the environmental impacts of tidal lagoons. Marine Policy, 2019, 99, 190-200.	3.2	3
30	An Innovative Machine Learning System for Real Time Condition Monitoring of Ship Machinery. Lecture Notes in Civil Engineering, 2021, , 753-768.	0.4	3
31	On modeling insights for emerging engineering problems: A case study on the impact of climate uncertainty on the operational performance of offshore wind farms. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2018, 232, 524-532.	0.7	0