Mark E Hay

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5329915/mark-e-hay-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

219	16,146	74	120
papers	citations	h-index	g-index
297	17,594 ext. citations	5.1	6.91
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
219	Biodiversity has a positive but saturating effect on imperiled coral reefs. Science Advances, 2021, 7, eat	oi8593	1
218	Trophic interactions will expand geographically but be less intense as oceans warm. <i>Global Change Biology</i> , 2020 , 26, 6805-6812	11.4	6
217	Effects of formalin preservation on carbon and nitrogen stable isotopes of seaweeds: A foundation for looking back in time. <i>Limnology and Oceanography: Methods</i> , 2020 , 18, 717-724	2.6	1
216	Human proximity suppresses fish recruitment by altering mangrove-associated odour cues. <i>Scientific Reports</i> , 2020 , 10, 21091	4.9	2
215	Parasite-host ecology: the limited impacts of an intimate enemy on host microbiomes. <i>Animal Microbiome</i> , 2020 , 2, 42	4.1	1
214	Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. <i>Global Change Biology</i> , 2020 , 26, 4785-4799	11.4	8
213	Seaweed-coral competition in the field: effects on coral growth, photosynthesis and microbiomes require direct contact. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20200366	4.4	5
212	Effects of future climate on coral-coral competition. <i>PLoS ONE</i> , 2020 , 15, e0235465	3.7	4
211	Variable effects of local management on coral defenses against a thermally regulated bleaching pathogen. <i>Science Advances</i> , 2019 , 5, eaay1048	14.3	8
210	Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. <i>Nature Ecology and Evolution</i> , 2019 , 3, 178-182	12.3	21
209	Trophic interactions across 61 degrees of latitude in the Western Atlantic. <i>Global Ecology and Biogeography</i> , 2019 , 28, 107-117	6.1	37
208	Contact with turf algae alters the coral microbiome: contact versus systemic impacts. <i>Coral Reefs</i> , 2018 , 37, 1-13	4.2	30
207	Overlooked coral predators suppress foundation species as reefs degrade. <i>Ecological Applications</i> , 2018 , 28, 1673-1682	4.9	12
206	Spatial and temporal limits of coral-macroalgal competition: the negative impacts of macroalgal density, proximity, and history of contact. <i>Marine Ecology - Progress Series</i> , 2018 , 586, 11-20	2.6	25
205	Intergenerational effects of macroalgae on a reef coral: major declines in larval survival but subtle changes in microbiomes. <i>Marine Ecology - Progress Series</i> , 2018 , 589, 97-114	2.6	14
204	Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral. <i>Scientific Reports</i> , 2017 , 7, 41053	4.9	21
203	Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. <i>Ecology</i> , 2017 , 98, 2312-2321	4.6	7

202	Herbivory in the marine realm. <i>Current Biology</i> , 2017 , 27, R484-R489	6.3	56
201	Seaweed allelopathy to corals: are active compounds on, or in, seaweeds?. <i>Coral Reefs</i> , 2017 , 36, 247-25	34.2	21
200	Cascading predator effects in a Fijian coral reef ecosystem. <i>Scientific Reports</i> , 2017 , 7, 15684	4.9	39
199	Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals. <i>PLoS ONE</i> , 2017 , 12, e0170638	3.7	39
198	Size matters: Predator outbreaks threaten foundation species in small Marine Protected Areas. <i>PLoS ONE</i> , 2017 , 12, e0171569	3.7	11
197	Chemically cued suppression of coral reef resilience: Where is the tipping point?. <i>Coral Reefs</i> , 2016 , 35, 1263-1270	4.2	2
196	Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs. <i>PLoS ONE</i> , 2016 , 11, e0155	5 9.4 9	18
195	Induced defence to grazing by vertebrate herbivores: uncommon or under-investigated?. <i>Marine Ecology - Progress Series</i> , 2016 , 561, 137-145	2.6	2
194	Negating the plant apparency model: rigorous tests are the fuel of progress. <i>New Phytologist</i> , 2016 , 210, 770-1	9.8	3
193	Competitors as accomplices: seaweed competitors hide corals from predatory sea stars. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2015 , 282,	4.4	16
192	Marine and terrestrial herbivores display convergent chemical ecology despite 400 million years of independent evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12110-5	11.5	22
191	Does seaweeddoral competition make seaweeds more palatable?. <i>Coral Reefs</i> , 2015 , 34, 87-96	4.2	12
190	Effect of marine protected areas (MPAs) on consumer diet: MPA fish feed higher in the food chain. Marine Ecology - Progress Series, 2015 , 540, 227-234	2.6	14
189	Spatial patterns of coral survivorship: impacts of adult proximity versus other drivers of localized mortality. <i>PeerJ</i> , 2015 , 3, e1440	3.1	9
188	Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20132615	4.4	38
187	Reef ecology. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. <i>Science</i> , 2014 , 345, 892-7	33.3	181
186	Challenges and opportunities in marine chemical ecology. <i>Journal of Chemical Ecology</i> , 2014 , 40, 216-7	2.7	8
185	Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience. <i>PLoS ONE</i> , 2014 , 9, e85786	3.7	75

184	The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20140846	4.4	488
183	Gene expression of corals in response to macroalgal competitors. <i>PLoS ONE</i> , 2014 , 9, e114525	3.7	8
182	Activated chemical defenses suppress herbivory on freshwater red algae. <i>Oecologia</i> , 2013 , 171, 921-33	2.9	9
181	Consumer diversity interacts with prey defenses to drive ecosystem function. <i>Ecology</i> , 2013 , 94, 1347-5	8 4.6	178
180	Grazing, Effects of 2013 , 8-17		1
179	Corals chemically cue mutualistic fishes to remove competing seaweeds. <i>Science</i> , 2012 , 338, 804-7	33.3	48
178	Seaweed allelopathy against coral: surface distribution of a seaweed secondary metabolite by imaging mass spectrometry. <i>Journal of Chemical Ecology</i> , 2012 , 38, 1203-14	2.7	49
177	Bromophycoic acids: bioactive natural products from a Fijian red alga Callophycus sp. <i>Journal of Organic Chemistry</i> , 2012 , 77, 8000-6	4.2	24
176	Are lower-latitude plants better defended? Palatability of freshwater macrophytes. <i>Ecology</i> , 2012 , 93, 65-74	4.6	18
175	Gene expression patterns of the coral in response to contact with macroalgae. <i>Coral Reefs</i> , 2012 , 31, 1177-1192	4.2	24
174	High content live cell imaging for the discovery of new antimalarial marine natural products. <i>BMC Infectious Diseases</i> , 2012 , 12, 1	4	83
173	Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef. <i>Oecologia</i> , 2012 , 169, 187-98	2.9	77
172	Chemical defense of the eastern newt (Notophthalmus viridescens): variation in efficiency against different consumers and in different habitats. <i>PLoS ONE</i> , 2011 , 6, e27581	3.7	10
171	Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily na \overline{N} e. <i>PLoS ONE</i> , 2011 , 6, e17227	3.7	97
170	Ecology and bioprospecting. Austral Ecology, 2011, 36, 341-356	1.5	28
169	Feeding and growth of native, invasive and non-invasive alien apple snails (Ampullariidae) in the United States: Invasives eat more and grow more. <i>Biological Invasions</i> , 2011 , 13, 945-955	2.7	51
168	Induced chemical defenses in a freshwater macrophyte suppress herbivore fitness and the growth of associated microbes. <i>Oecologia</i> , 2011 , 165, 427-36	2.9	20
167	Feeding complementarity versus redundancy among herbivorous fishes on a Caribbean reef. <i>Coral Reefs</i> , 2011 , 30, 351-362	4.2	65

(2009-2011)

166	Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by liquid chromatography-mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2011 , 46, 908-16	2.2	7
165	Macroalgal terpenes function as allelopathic agents against reef corals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17726-31	11.5	160
164	Predation constrains host choice for a marine mesograzer. <i>Marine Ecology - Progress Series</i> , 2011 , 434, 91-99	2.6	21
163	Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. <i>PLoS ONE</i> , 2010 , 5, e8963	3.7	118
162	Chemically rich seaweeds poison corals when not controlled by herbivores. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9683-8	11.5	235
161	Seaweed allelopathy degrades the resilience and function of coral reefs. <i>Communicative and Integrative Biology</i> , 2010 , 3, 564-6	1.7	24
160	Bioactive bromophycolides R-U from the Fijian red alga Callophycus serratus. <i>Journal of Natural Products</i> , 2010 , 73, 275-8	4.9	45
159	Crustaceans as Powerful Models in Aquatic Chemical Ecology 2010 , 41-62		4
158	Ecological leads for natural product discovery: Novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. <i>Tetrahedron</i> , 2010 , 66, 455-461	2.4	39
157	Structure and biological evaluation of novel cytotoxic sterol glycosides from the marine red alga Peyssonnelia sp. <i>Bioorganic and Medicinal Chemistry</i> , 2010 , 18, 8264-9	3.4	26
156	Unusual antimalarial meroditerpenes from tropical red macroalgae. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2010 , 20, 5662-5	2.9	30
155	Coral reefs in crisis: reversing the biotic death spiral. <i>F1000 Biology Reports</i> , 2010 , 2, 71		6
154	Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth. <i>Coral Reefs</i> , 2009 , 28, 555-568	4.2	55
153	Antibacterial neurymenolides from the Fijian red alga Neurymenia fraxinifolia. <i>Organic Letters</i> , 2009 , 11, 225-8	6.2	46
152	Antimalarial bromophycolides J-Q from the Fijian red alga Callophycus serratus. <i>Journal of Organic Chemistry</i> , 2009 , 74, 2736-42	4.2	65
151	Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7314-9	11.5	179
150	Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. <i>Annual Review of Marine Science</i> , 2009 , 1, 193-212	15.4	325
149	Nutrient versus herbivore control of macroalgal community development and coral growth on a Caribbean reef. <i>Marine Ecology - Progress Series</i> , 2009 , 389, 71-84	2.6	77

148	Structures and absolute configurations of sulfate-conjugated triterpenoids including an antifungal chemical defense of the green macroalga Tydemania expeditionis. <i>Journal of Natural Products</i> , 2008 , 71, 1616-9	4.9	17
147	Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 16201-6	11.5	311
146	An invasive crab alters interaction webs in a marine community. <i>Biological Invasions</i> , 2008 , 10, 347-358	2.7	41
145	Antineoplastic unsaturated fatty acids from Fijian macroalgae. <i>Phytochemistry</i> , 2008 , 69, 2495-500	4	27
144	A specialist detritivore links Spartina alterniflora to salt marsh food webs. <i>Marine Ecology - Progress Series</i> , 2008 , 364, 87-95	2.6	14
143	Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. <i>Journal of Organic Chemistry</i> , 2007 , 72, 7343-51	4.2	46
142	Stream mosses as chemically-defended refugia for freshwater macroinvertebrates. <i>Oikos</i> , 2007 , 116, 302-312	4	39
141	The potential role of wound-activated volatile release in the chemical defence of the brown alga Dictyota dichotoma: Blend recognition by marine herbivores. <i>Aquatic Sciences</i> , 2007 , 69, 403-412	2.5	29
140	To avoid or deter: interactions among defensive and escape strategies in sabellid worms. <i>Oecologia</i> , 2007 , 151, 161-73	2.9	33
139	Beaver herbivory on aquatic plants. <i>Oecologia</i> , 2007 , 151, 616-25	2.9	53
138	Predator release of the gastropod Cyphoma gibbosum increases predation on gorgonian corals. <i>Oecologia</i> , 2007 , 154, 167-73	2.9	46
137	A direct test of cyanobacterial chemical defense: Variable effects of microcystin-treated food on two Daphnia pulicaria clones. <i>Limnology and Oceanography</i> , 2007 , 52, 1467-1479	4.8	40
136	Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 10512-7	11.5	99
135	Population dynamics of the non-native crab Petrolisthes armatus invading the South Atlantic Bight at densities of thousands m?2. <i>Marine Ecology - Progress Series</i> , 2007 , 336, 211-223	2.6	29
134	Propagule pressure of an invasive crab overwhelms native biotic resistance. <i>Marine Ecology - Progress Series</i> , 2007 , 342, 191-196	2.6	43
	1 rogress series, 2001, 572, 171-170		
133	Comment on "Opposing effects of native and exotic herbivores on plant invasions". <i>Science</i> , 2006 , 313, 298; author reply 298	33.3	10
133	Comment on "Opposing effects of native and exotic herbivores on plant invasions". <i>Science</i> , 2006 ,	33·3 9	10

(2003-2006)

130	Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium Microcystis aeruginosa. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 7386-9	4.8	60
129	Herbivore vs. nutrient control of marine primary producers: context-dependent effects. <i>Ecology</i> , 2006 , 87, 3128-39	4.6	310
128	Bromophycolides C-I from the Fijian red alga Callophycus serratus. <i>Journal of Natural Products</i> , 2006 , 69, 731-5	4.9	41
127	Opposing effects of native and exotic herbivores on plant invasions. <i>Science</i> , 2006 , 311, 1459-61	33.3	440
126	When intraspecific exceeds interspecific variance: Effects of phytoplankton morphology and growth phase on copepod feeding and fitness. <i>Limnology and Oceanography</i> , 2006 , 51, 988-996	4.8	16
125	Chemical defenses promote persistence of the aquatic plant Micranthemum umbrosum. <i>Journal of Chemical Ecology</i> , 2006 , 32, 815-33	2.7	15
124	Fishes learn aversions to a nudibranch?s chemical defense. <i>Marine Ecology - Progress Series</i> , 2006 , 307, 199-208	2.6	31
123	Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus. <i>Organic Letters</i> , 2005 , 7, 5261-4	6.2	65
122	Biotic resistance to plant invasions? Native herbivores prefer non-native plants. <i>Ecology Letters</i> , 2005 , 8, 959-967	10	232
121	Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 6126-33	4.8	107
120	Do brominated natural products defend marine worms from consumers? Some do, most don! <i>Limnology and Oceanography</i> , 2004 , 49, 430-441	4.8	39
119	Mutualisms and Aquatic Community Structure: The Enemy of My Enemy Is My Friend. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2004 , 35, 175-197	13.5	132
118	Chemical defense of hydrothermal vent and hydrocarbon seep organisms: a preliminary assessment using shallow-water consumers. <i>Marine Ecology - Progress Series</i> , 2004 , 275, 11-19	2.6	24
117	Ambiguous role of phlorotannins as chemical defenses in the brown alga Fucus vesiculosus. <i>Marine Ecology - Progress Series</i> , 2004 , 277, 79-93	2.6	65
116	Selection of Estuarine Habitats by Juvenile Gags in Experimental Mesocosms. <i>Transactions of the American Fisheries Society</i> , 2003 , 132, 76-83	1.7	7
115	Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. <i>Oecologia</i> , 2003 , 136, 107-14	2.9	70
114	Intraspecific variation in palatability and defensive chemistry of brown seaweeds: effects on herbivore fitness. <i>Oecologia</i> , 2003 , 136, 412-23	2.9	47
113	Geographic and genetic variation in feeding preference for chemically defended seaweeds. <i>Evolution; International Journal of Organic Evolution</i> , 2003 , 57, 2262-76	3.8	53

112	PREY NUTRITIONAL QUALITY INTERACTS WITH CHEMICAL DEFENSES TO AFFECT CONSUMER FEEDING AND FITNESS. <i>Ecological Monographs</i> , 2003 , 73, 483-506	9	117
111	Defensive 2-alkylpyrrole sulfamates from the marine annelid Cirriformia tentaculata. <i>Journal of Natural Products</i> , 2003 , 66, 1110-2	4.9	17
110	GEOGRAPHIC AND GENETIC VARIATION IN FEEDING PREFERENCE FOR CHEMICALLY DEFENDED SEAWEEDS. <i>Evolution; International Journal of Organic Evolution</i> , 2003 , 57, 2262	3.8	5
109	Palatability and defense of some tropical infaunal worms: alkylpyrrole sulfamates as deterrents to fish feeding. <i>Marine Ecology - Progress Series</i> , 2003 , 263, 299-306	2.6	24
108	Tissue-specific induction of resistance to herbivores in a brown seaweed: the importance of direct grazing versus waterborne signals from grazed neighbors. <i>Journal of Experimental Marine Biology and Ecology</i> , 2002 , 277, 1-12	2.1	50
107	Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazing. <i>Oecologia</i> , 2002 , 132, 68-76	2.9	97
106	Indirect Effects of Feral Horses on Estuarine Communities. <i>Conservation Biology</i> , 2002 , 16, 1364-1371	6	64
105	Preface: The Next Wave in Aquatic Chemical Ecology. <i>Journal of Chemical Ecology</i> , 2002 , 28, 1897-1899	2.7	2
104	Community and ecosystem level consequences of chemical cues in the plankton. <i>Journal of Chemical Ecology</i> , 2002 , 28, 2001-16	2.7	51
103	Crayfish Feeding Preferences for Freshwater Macrophytes: The Influence of Plant Structure and Chemistry. <i>Journal of Crustacean Biology</i> , 2002 , 22, 708-718	0.8	56
102	GEOGRAPHIC VARIATION AMONG HERBIVORE POPULATIONS IN TOLERANCE FOR A CHEMICALLY RICH SEAWEED. <i>Ecology</i> , 2002 , 83, 2721-2735	4.6	62
101	Palatability of marine macro-holoplankton: Nematocysts, nutritional quality, and chemistry as defenses against consumers. <i>Limnology and Oceanography</i> , 2002 , 47, 1456-1467	4.8	24
100	CRAYFISH FEEDING PREFERENCES FOR FRESHWATER MACROPHYTES: THE INFLUENCE OF PLANT STRUCTURE AND CHEMISTRY. <i>Journal of Crustacean Biology</i> , 2002 , 22, 708-718	0.8	55
99	Plankton tethering to assess spatial patterns of predation risk over a coral reef and seagrass bed. <i>Marine Ecology - Progress Series</i> , 2002 , 225, 17-28	2.6	14
98	Fish-seaweed association on temperate reefs: do small-scale experiments predict large-scale patterns?. <i>Marine Ecology - Progress Series</i> , 2002 , 232, 239-246	2.6	11
97	Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus. <i>Chemoecology</i> , 2001 , 11, 1-8	2	28
96	Chemical defense of brown algae (Dictyopteris spp.) against the herbivorous amphipod Ampithoe longimana. <i>Oecologia</i> , 2001 , 126, 515-521	2.9	65
95	Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. <i>Marine Ecology - Progress Series</i> , 2001 , 218, 249-266	2.6	112

94	Grazing, Effects of 2001 , 265-276		1
93	Two antifeedant lignans from the freshwater macrophyte Saururus cernuus. <i>Phytochemistry</i> , 2000 , 54, 281-7	4	48
92	The effects of diet mixing on consumer fitness: macroalgae, epiphytes, and animal matter as food for marine amphipods. <i>Oecologia</i> , 2000 , 123, 252-264	2.9	109
91	CAN QUANTITY REPLACE QUALITY? FOOD CHOICE, COMPENSATORY FEEDING, AND FITNESS OF MARINE MESOGRAZERS. <i>Ecology</i> , 2000 , 81, 201-219	4.6	248
90	Geographic Variation in Camouflage Specialization by a Decorator Crab. <i>American Naturalist</i> , 2000 , 156, 59-71	3.7	74
89	STRONG IMPACTS OF GRAZING AMPHIPODS ON THE ORGANIZATION OF A BENTHIC COMMUNITY. <i>Ecological Monographs</i> , 2000 , 70, 237-263	9	245
88	CAN QUANTITY REPLACE QUALITY? FOOD CHOICE, COMPENSATORY FEEDING, AND FITNESS OF MARINE MESOGRAZERS 2000 , 81, 201		4
87	STRONG IMPACTS OF GRAZING AMPHIPODS ON THE ORGANIZATION OF A BENTHIC COMMUNITY 2000 , 70, 237		11
86	Activated chemical defenses in tropical versus temperate seaweeds. <i>Marine Ecology - Progress Series</i> , 2000 , 207, 243-253	2.6	45
85	MUTUALISM AND CORAL PERSISTENCE: THE ROLE OF HERBIVORE RESISTANCE TO ALGAL CHEMICAL DEFENSE. <i>Ecology</i> , 1999 , 80, 2085-2101	4.6	76
84	Effects of nutrients versus herbivores on reef algae: A new method for manipulating nutrients on coral reefs. <i>Limnology and Oceanography</i> , 1999 , 44, 1847-1861	4.8	93
83	Habenariol, a freshwater feeding deterrent from the aquatic orchid Habenaria repens (Orchidaceae). <i>Phytochemistry</i> , 1999 , 50, 1333-1336	4	18
82	Host-plant specialization by a non-herbivorous amphipod: advantages for the amphipod and costs for the seaweed. <i>Oecologia</i> , 1999 , 118, 471-482	2.9	47
81	REDUCING PREDATION THROUGH CHEMICALLY MEDIATED CAMOUFLAGE: INDIRECT EFFECTS OF PLANT DEFENSES ON HERBIVORES. <i>Ecology</i> , 1999 , 80, 495-509	4.6	83
80	Collaborating Dicean ecologists Dissess achievements, prepare for challenges. <i>Eos</i> , 1999 , 80, 77	1.5	1
79	Reduced mobility is associated with compensatory feeding and increased diet breadth of marine crabs. <i>Marine Ecology - Progress Series</i> , 1999 , 188, 169-178	2.6	51
78	Susceptibility of invertebrate larvae to predators:how common are post-capture larval defenses?. <i>Marine Ecology - Progress Series</i> , 1999 , 191, 153-161	2.6	13
77	Chemical Defenses of Freshwater Macrophytes Against Crayfish Herbivory. <i>Journal of Chemical Ecology</i> , 1998 , 24, 1639-1658	2.7	81

76	Organic Sulfur Compounds from Dictyopteris spp. Deter Feeding by an Herbivorous Amphipod (Ampithoe longimana) but Not by an Herbivorous Sea Urchin (Arbacia punctulata). <i>Journal of Chemical Ecology</i> , 1998 , 24, 1715-1732	2.7	20
75	Effects of fish predation and seaweed competition on the survival and growth of corals. <i>Oecologia</i> , 1998 , 113, 231-238	2.9	86
74	A field test of inducible resistance to specialist and generalist herbivores using the water lily Nuphar luteum. <i>Oecologia</i> , 1998 , 116, 143-153	2.9	31
73	Seaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding. <i>Chemoecology</i> , 1998 , 8, 91-98	2	32
72	Seaweed secondary metabolites as antifoulants: effects of Dictyota spp. diterpenes on survivorship, settlement, and development of marine invertebrate larvae. <i>Chemoecology</i> , 1998 , 8, 125-1	131	50
71	Bioassays with Marine and Freshwater Macroorganisms 1998 , 39-141		25
70	Synchronous SpawningWhen Timing Is Everything. <i>Science</i> , 1997 , 275, 1080-1081	33.3	14
69	Are Tropical Herbivores More Resistant Than Temperate Herbivores to Seaweed Chemical Defenses? Diterpenoid Metobolites from Dictyota acutiloba as Feeding Deterrents for Tropical Versus Temperate Fishes and Urchins. <i>Journal of Chemical Ecology</i> , 1997 , 23, 289-302	2.7	66
68	Effects of epibiosis on consumer prey interactions. <i>Hydrobiologia</i> , 1997 , 355, 49-59	2.4	59
67	The ecology and evolution of seaweed-herbivore interactions on coral reefs. <i>Coral Reefs</i> , 1997 , 16, S67-	S <u>7.6</u>	125
66	Coral-Seaweed-Grazer-Nutrient Interactions on Temperate Reefs. <i>Ecological Monographs</i> , 1996 , 66, 323	-3/44	82
65	Susceptibility to Herbivores Depends on Recent History of both the Plant and Animal. <i>Ecology</i> , 1996 , 77, 1531-1543	4.6	141
64	Palatability and Chemical Defense of Marine Invertebrate Larvae. <i>Ecological Monographs</i> , 1996 , 66, 431	-450	145
63	Induction of Seaweed Chemical Defenses by Amphipod Grazing. <i>Ecology</i> , 1996 , 77, 2287-2301	4.6	127
62	Chemical Defenses, Protein Content, and Susceptibility to Herbivory of Diploid vs. Haploid Stages of the Isomorphic Brown Alga Dictyota ciliolata (Phaeophyta). <i>Botanica Marina</i> , 1996 , 39,	1.8	18
61	Effects of Light and Nutrient Availability on the Growth, Secondary Chemistry, and Resistance to Herbivory of Two Brown Seaweeds. <i>Oikos</i> , 1996 , 77, 93	4	92
60	Chemical Ecology and Marine Biodiversity: Insights and Products from the Sea. <i>Oceanography</i> , 1996 , 9, 10-20	2.3	76
59	Testing for Synergisms between Chemical and Mineral DefensesA Comment. <i>Ecology</i> , 1996 , 77, 1948-	12,560	9

58	Marine chemical ecology: what's known and what's next?. <i>Journal of Experimental Marine Biology and Ecology</i> , 1996 , 200, 103-134	2.1	426
57	Acutilols, potent herbivore feeding deterrents from the tropical brown alga, Dictyota acutiloba. <i>Phytochemistry</i> , 1996 , 43, 71-73	4	17
56	Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. <i>Oecologia</i> , 1996 , 105, 361-368	2.9	127
55	Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. <i>Oecologia</i> , 1996 , 105, 377-387	2.9	97
54	Are Tropical Plants Better Defended? Palatability and Defenses of Temperate vs. Tropical Seaweeds. <i>Ecology</i> , 1996 , 77, 2269-2286	4.6	164
53	Responses of temperate reef fishes to alterations in algal structure and species composition. <i>Marine Ecology - Progress Series</i> , 1996 , 134, 37-47	2.6	74
52	Associational resistance and shared doom: effects of epibiosis on herbivory. <i>Oecologia</i> , 1995 , 102, 329-3	3 4 09	207
51	Constraints on Chemically Mediated Coevolution: Multiple Functions for Seaweed Secondary Metabolites. <i>Ecology</i> , 1995 , 76, 107-123	4.6	161
50	Can Small Rare Prey be Chemically Defended? The Case for Marine Larvae. <i>Ecology</i> , 1995 , 76, 1347-1358	34.6	39
49	Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina. <i>Marine Ecology - Progress Series</i> , 1995 , 119, 177-189	2.6	35
48	Effects of storage and extraction procedures on yields of lipophilic metabolites from the brown seaweeds Dictyota ciliolata and D. menstrualis. <i>Marine Ecology - Progress Series</i> , 1995 , 119, 265-273	2.6	51
47	Herbivore Resistance to Seaweed Chemical Defense: The Roles of Mobility and Predation Risk. <i>Ecology</i> , 1994 , 75, 1304-1319	4.6	163
46	Synergisms in Plant Defenses against Herbivores: Interactions of Chemistry, Calcification, and Plant Quality. <i>Ecology</i> , 1994 , 75, 1714-1726	4.6	259
45	Species as 'noise' in community ecology: do seaweeds block our view of the kelp forest?. <i>Trends in Ecology and Evolution</i> , 1994 , 9, 414-6	10.9	22
44	Defense of Ascidians and Their Conspicuous Larvae: Adult vs. Larval Chemical Defenses. <i>Ecological Monographs</i> , 1992 , 62, 547-568	9	163
43	Secondary metabolite chemistry of the caribbean marine alga Sporochnus bolleanus: A basis for herbivore chemical defence. <i>Phytochemistry</i> , 1992 , 32, 71-75	4	25
42	Debromoisocymobarbatol, a new chromanol feeding deterrent from the marine alga Cymopolia barbata. <i>Phytochemistry</i> , 1992 , 31, 4115-4118	4	19
41	The Chemical Ecology of PlantHerbivore Interactions in Marine versus Terrestrial Communities 1992 , 371-413		106

40	Amphipods Are Not All Created Equal: A Reply to Bell. <i>Ecology</i> , 1991 , 72, 354-358	4.6	22
39	FishBeaweed Interactions on Coral Reefs: Effects of Herbivorous Fishes and Adaptations of Their Prey 1991 , 96-119		81
38	Marine-terrestrial contrasts in the ecology of plant chemical defenses against herbivores. <i>Trends in Ecology and Evolution</i> , 1991 , 6, 362-5	10.9	63
37	Food and Shelter as Determinants of Food Choice by an Herbivorous Marine Amphipod. <i>Ecology</i> , 1991 , 72, 1286-1298	4.6	206
36	Secondary metabolites of the chemically rich ascoglossanCyerce nigricans. Experientia, 1990, 46, 327-3	29	30
35	Interactions of plant stress and herbivory: intraspecific variation in the susceptibility of a palatable versus an unpalatable seaweed to sea urchin grazing. <i>Oecologia</i> , 1990 , 82, 217-226	2.9	80
34	Specialist herbivores reduce their susceptibility to predation by feeding on the chemically defended seaweed Avrainvillea longicaulis. <i>Limnology and Oceanography</i> , 1990 , 35, 1734-1743	4.8	58
33	Seaweed Adaptations to Herbivory. <i>BioScience</i> , 1990 , 40, 368-375	5.7	134
32	Host-Plant Specialization Decreases Predation on a Marine Amphipod: An Herbivore in Plant's Clothing. <i>Ecology</i> , 1990 , 71, 733-743	4.6	101
31	Does algal morphology affect amphipod susceptibility to fish predation?. <i>Journal of Experimental Marine Biology and Ecology</i> , 1990 , 139, 65-83	2.1	102
30	Seaweed-herbivore-predator interactions: host-plant specialization reduces predation on small herbivores. <i>Oecologia</i> , 1989 , 81, 418-427	2.9	101
29	Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. <i>Science</i> , 1989 , 246, 116-8	33.3	300
28	Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. <i>Oecologia</i> , 1988 , 75, 233-245	2.9	120
27	Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. <i>Oecologia</i> , 1988 , 75, 246-252	2.9	118
26	Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. <i>Oecologia</i> , 1988 , 77, 118-129	2.9	151
25	Chemical defense in the seaweed Ochtodes secundiramea (Montagne) Howe (Rhodophyta): effects of its monoterpenoid components upon diverse coral-reef herbivores. <i>Journal of Experimental Marine Biology and Ecology</i> , 1988 , 114, 249-260	2.1	47
24	Marine Plant-Herbivore Interactions: The Ecology of Chemical Defense. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 1988 , 19, 111-145		443
23	Chemical defense in the seaweed Dictyopteris delicatula: differential effects against reef fishes and amphipods. <i>Marine Ecology - Progress Series</i> , 1988 , 48, 185-192	2.6	59

(1981-1987)

22	Chemical Defense Against Different Marine Herbivores: Are Amphipods Insect Equivalents?. <i>Ecology</i> , 1987 , 68, 1567-1580	4.6	211
21	Chemical Defense Against Diverse Coral-Reef Herbivores. <i>Ecology</i> , 1987 , 68, 1581-1591	4.6	144
20	Food preference and chemotaxis in the sea urchin Arbaciapunctulata (Lamarck) Philippi. <i>Journal of Experimental Marine Biology and Ecology</i> , 1986 , 96, 147-153	2.1	31
19	Associational Plant Defenses and the Maintenance of Species Diversity: Turning Competitors Into Accomplices. <i>American Naturalist</i> , 1986 , 128, 617-641	3.7	276
18	Seaweed susceptibility to herbivory: chemical and morphological correlates. <i>Marine Ecology - Progress Series</i> , 1986 , 33, 255-264	2.6	157
17	Competition between herbivourous fishes and urchins on Caribbean reefs. <i>Oecologia</i> , 1985 , 65, 591-598	3 2.9	100
16	Geographic Differences in Herbivore Impact: Do Pacific Herbivores Prevent Caribbean Seaweeds From Colonizing Via the Panama Canal?. <i>Biotropica</i> , 1984 , 16, 24	2.3	8
15	Patterns of Fish and Urchin Grazing on Caribbean Coral Reefs: Are Previous Results Typical?. <i>Ecology</i> , 1984 , 65, 446-454	4.6	254
14	Predictable spatial escapes from herbivory: how do these affect the evolution of herbivore resistance in tropical marine communities?. <i>Oecologia</i> , 1984 , 64, 396-407	2.9	118
13	Seasonal reproduction and abundance of six sympatric species of Gracilaria Grev. (Gracilariaceae; Rhodophyta) on a Caribbean subtidal sand plain. <i>Hydrobiologia</i> , 1984 , 116-117, 63-71	2.4	17
12	Functional morphology of intertidal seaweeds; adaptive significance of aggregate vs. solitary forms. <i>Marine Ecology - Progress Series</i> , 1984 , 18, 295-302	2.6	32
11	Seasonal reproduction and abundance of six sympatric species of Gracilaria Grev. (Gracilariaceae; Rhodophyta) on a Caribbean subtidal sand plain 1984 , 63-72		4
10	Spatial and temporal patterns in herbivory on a Caribbean fringing reef: the effects on plant distribution. <i>Oecologia</i> , 1983 , 58, 299-308	2.9	119
9	Is Glue Production by Seeds of Salvia Columbariae a Deterrent to Desert Granivores?. <i>Ecology</i> , 1983 , 64, 960-963	4.6	13
8	The Functional Morphology of Turf-Forming Seaweeds: Persistence in Stressful Marine Habitats. <i>Ecology</i> , 1981 , 62, 739-750	4.6	213
7	Spatial patterns of agrazing intensity on a caribbean barrier reef: Herbivory and algal distribution. <i>Aquatic Botany</i> , 1981 , 11, 97-109	1.8	151
6	Seed Escape from Heteromyid Rodents: The Importance of Microhabitat and Seed Preference. <i>Ecology</i> , 1981 , 62, 1395-1399	4.6	47
5	Herbivory, Algal Distribution, and the Maintenance of Between-Habitat Diversity on a Tropical Fringing Reef. <i>American Naturalist</i> , 1981 , 118, 520-540	3.7	152

4	Multalism between Harvester Ants and a Desert Ephemeral: Seed Escape from Rodents. <i>Ecology</i> , 1980 , 61, 531-540	4.6	132
3	The impact of trait-mediated indirect interactions in marine communities47-68		9
2	Did the historic overharvesting of sea cucumbers make coral more susceptible to pathogens?. <i>Coral Reefs</i> ,1	4.2	0
1	Chemical cues affecting recruitment and juvenile habitat selection in marine versus freshwater systems. <i>Aquatic Ecology</i> ,1	1.9	1