M Julia Pettinari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5329701/publications.pdf

Version: 2024-02-01

279701 315616 1,507 45 23 38 citations h-index g-index papers 47 47 47 1712 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Manipulation of global regulators in Escherichia coli for the synthesis of biotechnologically relevant products., 2021,, 437-453.		1
2	Melanin biosynthesis in bacteria, regulation and production perspectives. Applied Microbiology and Biotechnology, 2020, 104, 1357-1370.	1.7	71
3	Glycerol inhibition of melanin biosynthesis in the environmental Aeromonas salmonicida 34melT. Applied Microbiology and Biotechnology, 2019, 103, 1865-1876.	1.7	9
4	Microbial Cell Factories $ ilde{A}$ <i>la Carte</i> : Elimination of Global Regulators Cra and ArcA Generates Metabolic Backgrounds Suitable for the Synthesis of Bioproducts in Escherichia coli. Applied and Environmental Microbiology, 2018, 84, .	1.4	9
5	Optimization and Validation of a GC–FID Method for Quantitative Determination of 1,3-Propanediol in Bacterial Culture Aqueous Supernatants Containing Glycerol. Chromatographia, 2017, 80, 1121-1127.	0.7	9
6	A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	1.4	22
7	Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins. Applied and Environmental Microbiology, 2016, 82, 5060-5067.	1.4	110
8	Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. Current Microbiology, 2016, 72, 41-47.	1.0	25
9	The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations. Applied and Environmental Microbiology, 2016, 82, 244-254.	1.4	17
10	Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34mel ^T . Applied and Environmental Microbiology, 2015, 81, 5235-5248.	1.4	18
11	Polyhydroxyalkanoates. Advances in Applied Microbiology, 2015, 93, 73-106.	1.3	60
12	A Phasin with Many Faces: Structural Insights on PhaP from Azotobacter sp. FA8. PLoS ONE, 2014, 9, e103012.	1.1	20
13	Genome Sequence of the Melanin-Producing Extremophile Aeromonas salmonicida subsp. <i>pectinolytica</i> Strain 34mel ^T . Genome Announcements, 2013, 1, .	0.8	11
14	ESCHERICHIA COLI REDOX MUTANTS AS MICROBIAL CELL FACTORIES FOR THE SYNTHESIS OF REDUCED BIOCHEMICALS. Computational and Structural Biotechnology Journal, 2012, 3, e201210019.	1.9	27
15	Identification of Corynebacterium pseudotuberculosis from sheep by PCR-restriction analysis using the RNA polymerase \hat{I}^2 -subunit gene (rpoB). Research in Veterinary Science, 2012, 92, 202-206.	0.9	10
16	Micrometric periodic assembly of magnetotactic bacteria and magnetic nanoparticles using audio tapes. Journal of Applied Physics, 2012, 111, 044905.	1.1	11
17	Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology, 2011, 110, 1215-1223.	1.4	54
18	Unexpected Stress-Reducing Effect of PhaP, a Poly(3-Hydroxybutyrate) Granule-Associated Protein, in Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 6622-6629.	1.4	44

#	Article	lF	Citations
19	Effects of Aeration on the Synthesis of Poly(3-Hydroxybutyrate) from Glycerol and Glucose in Recombinant <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2010, 76, 2036-2040.	1.4	66
20	Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biochemicals in Escherichia coli redox mutants. Applied Microbiology and Biotechnology, 2010, 88, 563-573.	1.7	12
21	Ethanol synthesis from glycerol by <i>Escherichia coli</i> redox mutants expressing <i>adhE</i> from <i>Leuconostoc mesenteroides</i> Journal of Applied Microbiology, 2010, 109, 492-504.	1.4	40
22	Redox driven metabolic tuning. Bioengineered Bugs, 2010, 1, 293-297.	2.0	7
23	Elimination of <scp>d < /scp>-Lactate Synthesis Increases Poly(3-Hydroxybutyrate) and Ethanol Synthesis from Glycerol and Affects Cofactor Distribution in Recombinant < i>Escherichia coli < /i>. Applied and Environmental Microbiology, 2010, 76, 7400-7406.</scp>	1.4	25
24	Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) Producer Isolated from an Antarctic Environment. Current Microbiology, 2009, 59, 514-519.	1.0	93
25	Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Applied Microbiology and Biotechnology, 2008, 77, 1337-1343.	1.7	74
26	The Legacy of HfrH: Mutations in the Two-Component System CreBC Are Responsible for the Unusual Phenotype of an Escherichia coli arcA Mutant. Journal of Bacteriology, 2008, 190, 3404-3407.	1.0	21
27	ArcA Redox Mutants as a Source of Reduced Bioproducts. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 41-47.	1.0	13
28	<i>Escherichia coli arcA</i> Mutants: Metabolic Profile Characterization of Microaerobic Cultures using Glycerol as a Carbon Source. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 48-54.	1.0	48
29	Effects of Granule-Associated Protein PhaP on Glycerol-Dependent Growth and Polymer Production in Poly(3-Hydroxybutyrate)-Producing <i>Escherichia coli</i> Microbiology, 2007, 73, 7912-7916.	1.4	58
30	Effect of the granule associated protein phasin (PhaP) on cell growth and poly(3-hydroxybutyrate) (PHB) accumulation from glycerol in bioreactor cultures of recombinant E. coli. Journal of Biotechnology, 2007, 131, S167.	1.9	1
31	The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid, 2007, 58, 240-248.	0.4	47
32	dye (arc) mutants: insights into an unexplained phenotype and its suppression by the synthesis of poly (3-hydroxybutyrate) in Escherichia coli recombinants. FEMS Microbiology Letters, 2006, 258, 55-60.	0.7	42
33	dye(arc) mutants: insights into an unexplained phenotype and its suppression by the synthesis of poly (3-hydroxybutyrate) inEscherichia colirecombinants. FEMS Microbiology Letters, 2006, 259, 332-332.	0.7	O
34	Impaired polyhydroxybutyrate biosynthesis from glucose inPseudomonassp. 14-3 is due to a defective ĀŽÂ²-ketothiolase gene. FEMS Microbiology Letters, 2006, 264, 125-131.	0.7	28
35	New Recombinant Escherichia coli Strain Tailored for the Production of Poly(3-Hydroxybutyrate) from Agroindustrial By-Products. Applied and Environmental Microbiology, 2006, 72, 3949-3954.	1.4	90
36	Poly(3-Hydroxybutyrate) Synthesis by Recombinant Escherichia coli arcA Mutants in Microaerobiosis. Applied and Environmental Microbiology, 2006, 72, 2614-2620.	1.4	70

#	Article	IF	CITATIONS
37	Statistical optimization of a culture medium for biomass and poly(3-hydroxybutyrate) production by a recombinant Escherichia coli strain using agroindustrial byproducts. International Microbiology, 2005, 8, 243-50.	1.1	34
38	A Polyhydroxybutyrate-Producing Pseudomonas sp. Isolated from Antarctic Environments with High Stress Resistance. Current Microbiology, 2004, 49, 170-4.	1.0	84
39	Evidence of an association between poly(3-hydroxybutyrate) accumulation and phosphotransbutyrylase expression in Bacillus megaterium. International Microbiology, 2003, 6, 127-129.	1.1	10
40	Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in Azotobacter sp. FA8. Plasmid, 2003, 50, 36-44.	0.4	17
41	Null mutations in the essential geneyrfF(mucM) are not lethal inrcsB,yojNorrcsCstrains ofSalmonella entericaserovar Typhimurium. FEMS Microbiology Letters, 2003, 222, 25-32.	0.7	24
42	Phosphotransbutyrylase Expression in Bacillus megaterium. Current Microbiology, 2001, 42, 345-349.	1.0	2
43	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 51-55.	1.7	23
44	Poly(3-Hydroxybutyrate) Synthesis Genes in Azotobacter sp. Strain FA8. Applied and Environmental Microbiology, 2001, 67, 5331-5334.	1.4	43
45	trans activation of the Escherichia coliato structural genes by a regulatory protein from Bacillus megaterium  : potential use in polyhydroxyalkanoate production. Applied Microbiology and Biotechnology, 1998, 49, 737-742.	1.7	3